E-S1LQVE

an incremental approach to automated, content-based
email classification

Masters Thesis: 505
by:
Christiaan Rudolfs

crudolfs@sci.kun.nl

Katholieke Universiteit Nijmegen (KUN)
dept. Computing Science

Supervisors:
Prof. C.H.A. Koster (KUN)
Dr. Paul Jones (Edmond R&D)

2nd August 2002

Contents

1 Introduction

1.1 Previouswork
1.2 Problem statement,
1.3 Overview

2 Automatic Document Classification

2.1 Supervised learning algorithms
2.1.1 Training linear classifiers.
2.2 Balanced Winnow oL
2.2.1 Threshold range
2.3 Batched vs. incremental learning
2.3.1 Batched learningo oL
2.3.2 Incremental learning

3 Incremental learning

3.1 Different situations o o0
3.2 E-SlQve
3.2.1 Feature extraction
3.2.2 Internal process
3.2.3 Weight initialisation
3.2.4 Determining the relevant class
3.3 E-Sl@Qvevs. LCS
3.3.1 Corpora
3.3.2 Measures: Precision, Recall, Accuracy
3.3.3 Experiment: Learning behaviour
3.3.4 Results: Learning behaviour.
3.3.5 Experiment: Mistake behaviour
3.3.6 Results: Mistake behaviour
3.3.7 Performance
3.4 Conclusion

13
13
14

15

4 Optimalisations

4.1 Turbo-Training
4.1.1 What is Turbo-Training
4.1.2 Experiment oL
413 Results o

4.2 Aggressive-Training
4.2.1 Experiment
422 Results o

4.3 Certainty-based classification
4.3.1 Experiment L.
432 Results oo

4.4 Conclusion

5 Negative relevance feedback

5.1 Obtaining relevance feedback
5.2 Negative relevance feedback
5.2.1 Incremental learning process
5.3 Non-delayed negative relevance feedback
5.3.1 Experiment oL
532 Results o o
5.4 Delayed negative relevance feedback
5.4.1 Experiment 0.
54.2 Results Lo
5.4.3 Lazyness.

5.5 Conclusion

6 Conclusion

6.1 Futureresearch
6.1.1 Term selection
6.1.2 Thresholdrange
6.1.3 Certainty Based Classification.

6.2 Further work

Bibliography

ii

29
29
29
30
30
33
33
33
36
37
38
39

41
41
42
43
44
44
45
47
47
48
48
ol

53
o4
o4
95
o6
o7

61

Chapter 1

Introduction

On-line communication, in particular email communication, has an explosive
growth. Especially large companies are often flooded with thousands of
electronic messages a month. Management of these emails is very important,
as this enables a faster processing and easier retrieval of (old) messages.

A way of managing emails is to classify every email into a pre-defined cate-
gory (mailfolder), which applies to that email. Performing this classification
task by hand often is a difficult and time-consuming (thus expensive) job.
Therefore an email classification system, which automatically classifies in-
coming emails, becomes very useful.

An email classification system has to be far more powerful than the “filter”
functions provided by email packages that file incoming messages according
to the sender’s name, or a word in the subject line, as these often suggest
nothing about the message’s content. To effectively categorize email, the
system would have to analyze the full text of every message. Furthermore
the system must be able to quickly adapt to changes in its dynamic email
environment, and the user should not endure additional burdens using the
system.

1.1 Previous work

Much research has recently been vested in theoretical concerns surrounding
the problem of text classification (also known as text categorization). Many
publications are describing issues dealing with this problem. On the other
hand, the problem of automatic email classification is rather new to scientific
research, as systems for categorizing emails into different classes are just now
becoming available. Most publications describing automatic email classifi-
cation are dealing with theoretical concerns (e.g. comparing classification
accuracy for different learning algorithms) surrounding the applicability of

Chapter 1 Introduction 2

text classification to the problem of automatic email classification. Only a
few publications deal with practical concerns for automatic email classifi-
cation (e.g. the problem of user-interaction in a real-life situation).

In [6] methods for learning text classifiers are compared, focusing on the
kinds of classification problems that might arise in the filtering and filing
of personal email messages. An extended version of the rule-based learning
algorithm RIPPER is compared with the traditional IR learning algorithm
Rocchio ([19]). The extended RIPPER algorithm seemed to perform best
on various email corpora, although Rocchio performed very well also.

In [18] three experiments are presented, comparing a Naive Bayesian algo-
rithm with bag-valued features against the RIPPER rule learning algorithm
([5]) in different email classification tasks. In learning a user’s foldering pref-
erences, and learning to detect spam, the Bayesian classifier substantially
outperformed RIPPER in classification accuracy. In reconstructing the pol-
icy of an automated, rule-based email classifier, both systems performed
very well, but the Bayesian classifier still showed a small but statistically
significant improvement over RIPPER.

In [11] it was empirically proved that co-training [4] can be applied to email
classification. At the same time it was shown that the performance of co-
training depends on the learning method it uses. Namely, Naive Bayes
performed very poorly in the experiments while Support Vector Machines
([10]) worked very well. Though, more research is needed to clarify the
causes of the poor behaviour of Naive Bayes in combination with co-training
and explore other possibilities (along with feature selection) to improve the
performance of Naive Bayes in the co-training loop.

In [9] a customizable email classification system, Ishmail, has been described
that addresses the problem of information overload. Ishmail is unique in
that it not only sorts messages into mailboxes, but it orders mailboxes by
a combination of user-specified priorities and alarms. In this article, Ish-
mail’s design is diagramed in terms of its functional components and their
interactions.

In [22] results are demonstrated of Swiftfile, an email assistant that helps
users organize their (personal) email into folders. Using a text classifier that
dynamically adjusts to the user’s mail-filing habits, Swiftfile predicts for each
incoming message the three folders that it deems most likely to be choosen
by the user as destinations. Swiftfile uses a modified version of AIM [2] for
classifying text. AIM is a TF-IDF style text classifier developed at IBM
Almaden. Results of their experiments showed that incremental learning
(2.3) with this ATM classifier performs very well in classifying emails.

1.2 Problem statement 3

1.2 Problem statement

This thesis discusses both theoretical and practical concerns surrounding
the applicability of text classification to the problem of email classification.

Using a prototype, called E-Sl@ve (3.2), the following issues are explored:

Theoretical issues:

e How applicable is incremental learning (2.3) for the Balanced Winnow
algorithm (2.2), to automatic, content-based email classification, and
what are the differences with respect to batched learning.

e Is it possible to extend or modify the Balanced Winnow algorithm,
such that an increased classification accuracy with incremental learn-
ing is achieved.

Practical issues:

e How to modify E-Sl@ve such that, in a real-life situation, the user only
needs little effort in keeping the system accurate.

1.3 Overview

In chapter 2, the domain of automatic document classification is introduced,
the working of Balanced Winnow is described, and the differences between
batched learning and incremental learning are explained. In chapter 3, the
prototype E-Sl@ve is introduced, which provides the core functionality for
an email classification system. Using results of experiments, the accuracy of
E-Sl@ve in classifying emails is explored. Next, in chapter 4, some (possible)
optimalisations to E-Sl@Qve are introduced for achieving higher classification
accuracy. In chapter 5, negative relevance feedback is introduced, which is
described as a scenario that enables users in a real-life situation to keep the
system accurate with only little effort. Finally, in chapter 6, several issues
for future research are mentioned.

Chapter 1 Introduction

Chapter 2

Automatic Document
Classification

In document classification, given a text document (e.g. an email) and a col-
lection of potential classes, an algorithm decides which classes the document
belongs to, or how strongly it belongs to each class. More formally it can
be described as follows (see [12]):

Given a set of classes (topics) C and examples for each class, construct
a classifier for each class which, given a document d, computes the
relevance of document d for the class.

A classifier for a class ¢ is thus a function which expresses the relevance of
documents for class c.

Classifiers have to be learned. Many different learning algorithms for text
classifiers exist, all of them using different techniques in learning the classi-
fiers. In this thesis the learning algorithm Balanced Winnow (2.2) is used.
Balanced Winnow belongs to the class of supervised learning algorithms.

2.1 Supervised learning algorithms

Learning algorithms for document classification (also known as text clas-
sification/categorization) bring together techniques from IR (Information
Retrieval) and AT (Artificial Intelligence). For an overview of the literature
in this field see [21]. In this thesis only one supervised learning algorithm
(Winnow) is explored.

Supervised learning algorithms use (labeled) training data to learn classi-
fiers which classify new texts. Documents in a corpus, which consists of a set
of “typical” pre-classified example documents for each class, form this train-
ing data. Each document in this corpus is labeled by one or more classes. A

Chapter 2 Automatic Document Classification 6

document is considered as a positive example for all classes with which it is
labeled and as a negative ezample for all classes with which it is not labeled.

Three broad classes of supervised learning algorithms can be distinguished:

1. linear classifiers
Learning algorithms for linear classifiers classify new documents ac-
cording to the score for each class that is obtained by taking an in-
product of class profile (weighted vector of keywords) and document
profile (2.1.1). Good examples are Rocchio ([19]) and (Balanced) Win-
now ([14, 8]).

2. rule-based classifiers
Learning algorithms for rule-based classifiers learn by inferring a set
of rules from pre-classified documents. A good example is the Ripper
algorithm ([5, 7]).

3. example-based classifiers
Learning algorithms for ezample-based classifiers classify a new doc-
ument by finding the k& nearest to it in the train set and doing some
form of majority voting on the classes of these nearest neighbours (see
110]).

In this thesis Balanced Winnow (2.2) is used. This algorithm trains linear
classifiers.

2.1.1 Training linear classifiers

Text classifiers represent a document d by a set of features:

F(d) = {f1,f2, "+, fm}, where m is the number of unique features in the
document. In this thesis a feature is represented by a single word. Every
feature f has a strength in any document d, denoted by s4(f). Several ways
to compute this strength are found in the Information Retrieval literature:

e boolean strength: s;(f) =1 or 0, indicating respectively the presence
or absence of feature f in d.

e frequency strength: sy4(f) = n(f,d), reflecting the number of times f
appears in d.

e square root strength: sy4(f) = \/n(f,d), reflecting the square root of
the number of times f appears in d.

In E-Sl@ve (3.2), square root term strengths are used, because in [8] it was
explored that using square root term strengths resulted in the best accuracy
compared to the other methods of computing term strengths.

2.2 Balanced Winnow 7

A linear (text) classifier represents a document profile for a document d by
a vector of its feature strengths: 35 = (s4(f1), sa(f2), -+, 8a(fm))-

A category is represented by a weighted vector of keywords (also called class
profile): w. = (we(f1), we(f2), -+, we(fn)), where n is the number of features
in the domain and w.(f;) is the weight of the i-th feature for class c.

The score of document d for class ¢, denoted as S.(d), is evaluated by com-
puting the dot product of weight vector w,. and feature strength vector s,:

Se(d) = > salfi) - we(fi)

fi€F(d)

The algorithm classifies a document according to the scores it achieves for
all classes. When the score for a class is above a certain threshold, then the
document is classified as relevant for that class. This makes it possible for
a document to be classified in more than one class, which is called multi-
classification. In mono-classification the document is assigned to exactly
one class.

The task of a learning algorithm for linear text classifiers is to find weight
vectors (class profiles) which best classify new documents. In the next sec-
tion, it is explained how Balanced Winnow performs this task.

2.2 Balanced Winnow

Balanced Winnow ([8]) is a variant of Littlestone’s Winnow algorithm ([14]).
Winnow (like Support Vector Machines [10]) classifies documents by learning
linear separators (classifiers) (2.1.1) in the feature space. Winnow is an on-
line and mistake-driven learning algorithm. It is on-line in the sence that
a classifier X, for class ¢ first predicts the relevance of a document for class
¢ and then recieves feedback, called relevance feedback, on this prediction,
which may be used to update the current hypothesis (vector of weights) of
the classifier. Because this hypothesis is only updated when the algorithm
has made a wrong prediction (and thus made a mistake), Balanced Winnow
is called mistake-driven. The current vector of weights represents the current
state of the classifier.

To learn classifiers (which may be interpreted as finding good weight vec-
tors), usually a set of pre-classified documents from a corpus is used as the
training data. This is called the train set. In a train set each document is
labeled by one (mono-classification) or more (multi-classification) classes.
A document is considered as a positive example for all classes with which it
is labeled and as a negative example for all classes with which it is not la-
beled. The labeling of the documents is used to provide “perfect” relevance
feedback.

Chapter 2 Automatic Document Classification 8

Balanced Winnow has three parameters: a threshold 6, and two update
parameters, a promotion parameter o and a demotion parameter 3. They
are choosen as follows:

0=1
a>1
0<p<1

The algorithm maintains two weights for every feature: w* and w—. The
overall weight of a feature is the difference between these two weights, thus
allowing for negative weights. We have seen (2.1.1) that a document d is
denoted as a vector of its feature strengths: 353 = (s4(f1),s4(f2),*, $a(fm))s
where m is the number of unique features in document d and s4(f,,) is the
strength of the m-th feature in d. Now, given a document d, a classifier X,
for class ¢ predicts that this document is relevant for that class if:

m

Se(d) = Y (w (fj) = we (£3)) - sa(f;) > 0

J=1

in which w,(f;) is the weight of the j-th feature in document d for class c.
The initialisation of the weights will be discussed later (3.2.3). For now it
is important to know that w™ has an initial value that is 2 times the value
of w™. In case a classifier X, makes a wrong prediction, weight vector w,
will be updated. Only the weights of features in W, that also occur in the
document (the active features) are updated. This happens according to the
following update rules:

1. Positive example
If S.(d) < @ Ad € ¢, then for all active features, wl is promoted by
multiplying it with « and w_ is demoted by multiplying it with £.
This results in an increasing overall weight (w™ — w™) for all active
features, which promotes the positive example d.

2. Negative example
If S(d) > 0 Ad ¢ ¢, then for all active features, w} is demoted by
multiplying it with § and w_ is promoted by multiplying it with o.
This results in a decreasing overall weight for all active features, which
demotes the negative example.

This promoting and demoting of weights ensures that the classifiers learn
from their mistakes.

2.3 Batched vs. incremental learning 9

2.2.1 Threshold range

An extension to this algorithm is the thick-threshold heuristic (see [8]). In
this case the scores for positive and negative examples are separated as
widely as possible. The idea is to introduce two separate thresholds: 6+
and 6, such that #7 > 6. Now a classifier X, for class ¢ predicts that a
document d is relevant for class ¢ if S.(d) > 07. A document is predicted
to be irrelevant if S.(d) < 6. All scores within the range [0 ,07] are
considered mistakes.

When this heuristic is used, a positive example (d € ¢) is promoted when
Sc(d) < 07 and a negative example (d ¢ c¢) is demoted if S.(d) > 6 . In
this way the scores for all positive examples are widely separated from the
scores for negative examples. E-Sl@ve uses this heuristic.

2.3 Batched vs. incremental learning

Now that it has been explained how Balanced Winnow works, there remains
an important issue unmentioned. This issue concerns the overall classifica-
tion process. This classification process defines the way how classifiers are
build, the moments when classifiers are trained and the moments when these
classifiers are used to classify new (unseen) documents. We consider two
different approaches for this process: batched learning (as in LCS ! ([3])
and incremental learning (as in E-Sl@ve (3.2)). Note that, while explain-
ing these approaches, it is assumed that the learning algorithm Balanced
Winnow (2.2) is used.

2.3.1 Batched learning

The batched learning approach distinguishes a training phase and a produc-
tion phase. The training phase is used to train the classifiers, while the
production phase is used to apply the trained classifiers to classify new
(unseen) documents. The classification process for this approach consists of
the following steps:

1. Collect statistics on the train set.
2. Create initial class profiles.
3. Train iteratively on all documents of the train set (training phase).

4. Classify new documents (production phase).

"Linguistical Classification System, developed at the Katholieke Universiteit of
Nijmegen (KUN)

Chapter 2 Automatic Document Classification 10

In this approach, training can be done iteratively on all the documents in
the train set. As Balanced Winnow is sensitive to the ordering of training
documents, after each iteration the documents in the train set are shuffled
randomly. Iterating can be done for a fixed number of times or until the
classifiers do not make any mistakes (2.2) on the train set anymore. When
the training phase is finished, the classifiers have reached their final state.
This implies that, during the production phase, the classifiers do not change,
which means that new documents are not used for training.

Each step in this process can not be performed until its previous step has
been performed. Therefore this (batched learning) approach has some re-
strictions in our situation (that deals with email classification in a dy-
namic environment). These restrictions are:

the required presence of a train set, which must be preserved.

e the required training of a batch of documents before the production
phase can be started.

e classifiers do not learn (immediately) from new documents.

e classifiers have to be learned from scratch, when additional training
with new documents is desired, adding new plus trained documents.

2.3.2 Incremental learning

The global process for incremental learning consists of two simple steps:

1. Collect class names.

2. Classify new documents (production phase).

What we see is that, in contrast with batched learning, incremental learn-
ing does not require the presence and preservation of a train set. Initial
training is not required either. The only information that must be avail-
able from start, are the names of potential classes in which new documents
can be classified. The algorithm can therefore directly start classifying new
(unseen) documents in the production phase.

In an incremental learning situation, classifiers are trained incrementally
during the production phase, never reaching a final state. This means that
every new and relevant document that arrives will be used immediately
(after obtaining relevance feedback (5.1)) to update existing classifiers from
their current state. In this way, classifiers are trained one single document
at a time, after which they are ready to classify new documents again. This
is a big difference with batched learning, where a whole batch of documents

2.3 Batched vs. incremental learning 11

is trained iteratively from scratch, before the production phase can even
be started. Note that training iteratively on a train set is not possible in
the incremental learning situation (as the train set is not preserved), which
makes another difference with batched learning.

In a real-life situation, several ways to obtain relevance feedback (which is
the information about a document that indicates the class for which that
document is most relevant, according to an “expert”), are imaginable. In
chapter 5 this issue is explored. For now it is only important to notice that
recieving feedback on the relevance of a new document is necessary, as non-
relevant documents do not belong to any of the potential classes and are
therefore useless training examples.

In the domain of email classification, incremental learning is preferable. The
advantages are:

e the production phase can be started right away (no pre-classified doc-
uments nor initial training are required).

e classifiers learn immediately from new documents, which enables them
to adapt to slight changes in the “meaning” of topics (classes) over time
(which is useful within the email domain).

e classifiers are trained one single document at a time (no batch), which
makes periods of training very short and ensures that classifiers are
ready for classifying new documents immediately.

Chapter 2 Automatic Document Classification

12

Chapter 3

Incremental learning

The email environment is very dynamic. Contents of new messages and the
user’s mail filing habits constantly change. For email classifiers it is impor-
tant to adapt to these changes, preferably as soon as possible. Some email
classification systems adapt to these changes by retraining from scratch on
a daily basis (mostly over night) (see [15], [16]). A potential disadvantage of
this batched learning (2.3) is that the system may not be sufficiently respon-
sive to the above mentioned changes. Therefore, a better way of adapting
to changes would be to update existing classifiers from their current state
immediately after a certain event occurs (which can be the arrival of a new
email, the movement of an email from one folder to another, and more..).
This is what is called incremental learning. In paragraph 2.3 incremental
learning has been described more thoroughly.

3.1 Different situations

In [22] was demonstrated, that in a dynamic email environment incremental
learning indeed performs better than periodic (batched) learning. However,
an important detail is that a different algorithm was used. This algorithm
can incrementally update classifiers with a single new document, obtaining
the same state of the classifiers as it would have obtained by retraining
the classifiers from scratch including the new document. The consequence
of this is, that in a static environment the results of incremental learning
equal the results of batched learning. This does not hold for the Balanced
Winnow algorithm.

In a static environment, Balanced Winnow should perform better in a
batched learning situation than in an incremental learning situation. This
assumption can be made for two reasons:

1. in a batched learning situation classifiers have statistics on the whole

Chapter 3 Incremental learning 14

train set, while in an incremental learning situation classifiers only
have statistics upto the current state of the system, starting with no
statistics at all.

2. in a batched learning situation classifiers train iteratively on all docu-
ments in a train set, while in an incremental learning situation classi-
fiers are trained with one single document not having the possibility
of training iteratively on all documents in a train set.

Especially the second point is assumed to have great impact on the results,
because training iteratively on all documents from a train set ensures that
classifiers get to know their class members (and non class members) better.
Therefore, in this chapter the performance of incremental learning compared
to batched learning for the Balanced Winnow algorithm is explored.

3.2 E-SlQve

For this thesis, a system called E-Sl@Qve was developed, which provides the
core functionality for an email classification system. E-SlQ@ve is coded in the
Java programming language. The tools, runtimes and APIs that are used,
were all provided by the Java 2 Platform, Standard Edition '. E-Sl@ve
learns, according to the incremental learning approach (2.3) applied to the
Balanced Winnow algorithm (using the thick-threshold heuristic (2.2.1)).
The system is (currently) only suitable for mono-classification, where every
document is assigned to exactly one class. No linguistical techniques (e.g.
stemming), stoplists or other pre-processing “instruments” are used.

3.2.1 Feature extraction

A text classifier represents a document by its features strengths. E-Sl@ve
represents features as single words, and extracts them from a document
according to the following criteria:

e a feature should begin with a letter.

e 3 feature should have a minimum length of two characters.

Email addresses are cut into pieces. For example the email address chris-
tiaan@edmond.nl is cut into three features (christiaan, edmond, nl). This
prevents that, when a person has multiple email addresses within the same
domain, these addresses are identified as two different features. For exam-
ple the same person could also have the email address christiaan.rudolfs @ed-

Yhttp://java.sun.com/j2se/

3.2 E-Sl@ve 15

mond.nl. When these email addresses are not cut into pieces, these two ex-
ample email addresses would be identified as two different features, while it
belongs to the same person. Whether cutting email addresses into pieces
influences the classification accuracy in a positive or negative manner, if it
influences the accuracy at all, is not known.

3.2.2 Internal process

E-Sl@ve follows the incremental learning approach. In 2.3, the process for
this approach has been described already, but this time more details are
given.

1. Collect class names.
2. Classify new emails (production phase).

(a) Classify one new email according to the current state of the clas-
sifiers.

(b) Obtain relevance feedback on the email.

(c) Extend all class profiles (weight vectors) with the terms that oc-
cur in the email.

(d) Incrementally train all classifiers with the single email (Balanced
Winnow (2.2)), using it as a positive example for the class for
which it is relevant (according to the recieved feedback in (b))
and as a negative example for all other classes.

Formal description

ad 1):

Obtain potential classes: {c1,cg, -, ¢, }, where z is the number of classes.
ad 2(a)):

For each class c;, there exists a classifier X, with weight vector w.,. This
weight vector is initially empty. A new email e arrives, and will be classified
according to the current weight vector w,, for all classifiers X,.

ad 2(b)):

Get the class ¢, for which email e is relevant (if there is any), according to
the label of e (in an experimental environment) or according to the feedback
from an “expert” user (real-life situation, see also chapter (5)).

ad 2(c)):

Extend each weight vector w,, with all the features (initial weighted) that
occur in e. In this way, weight vector w,, will contain many negative features,
which are the features that do not occur in any of the examples for class ¢;.

Chapter 3 Incremental learning 16

ad 2(d)):

When classifier X, makes a mistake according to the thick-threshold heuris-
tic (2.2.1), the active features (2.2) of weight vector w,, are promoted. For
all other classifiers X, for which ¢ # z it holds that, when they make a
mistake, the active features in weight vector w,, are demoted.

Note that step 2(a) to 2(d) are repeated, every time a new message arrives.

3.2.3 Weight initialisation

An important issue is the initialisation of the Winnow weights w™ and w™.
As we have seen already (2.2), these weights are used to compute the score
of a document d for class ¢:

Se(d) =Y (wl () —w, (f§)) - salfy)
j=1

When the weights are initialised significantly too low or too high, more
documents have to be trained to achieve a certain level of accuracy. The
1deal initialisation of these weights, in the absence of any knowledge of the
correct classes of the documents, should have the property that it assigns to
an average document for every class the score 6 (which is 1).

In our situation (incremental learning), it is unknown what an average doc-
ument is, because there are no statistics on the potential classes available.
For this reason, the choice was made to modify s4(f), the strength of feature
f in document d, by using a quantity that is normalized with respect to the
document length. Formally, the strength s;(f) is replaced by a normalized
strength:

__ salf)
Y ier(d) Sali)

snormg(f)

in which snormg(f) is the normalized strength of feature f in document d,
and the other symbols are defined as in 2.1.1.

This modification makes it possible to initialise w™ to 20 and w™ to #. The
explanation for this is as follows:

The average document strength dg,, can be defined as:

davq == Z S’fLO’)"md(f) = Sd(f) — = ZfEF(d) Sd(f)
 feR() fEF(d) 2icr(d) sa(1) 2ieF(d) sd(%)

=1

Consequently this leads to S.(d) = 0 (=1), because for every f € F(d) the
coefficiént of the Winnow weights is 1, as (w™ —w ™) = (20 —0) =0 = 1. As
this is the score for a document that we wanted, it is justified to initialise
wt to 20 and w™ to 6.

3.3 E-Sl@ve vs. LCS 17

3.2.4 Determining the relevant class

The algorithm classifies a document according to the scores it achieves for
all classes. When the score for a class is above a certain threshold, then the
document is classified as relevant for that class. Therefore it is possible that
a document will be classified in more than one class (multi-classification).
Because this thesis deals with mono-classification, a new document should
be classified in exactly one class. To determine this class, the score S.(d)
of document d is computed for every class ¢, according to the current state
(weight vector) of the classifiers, and then d is assigned to the class for which
d obtained the highest score.

In 4.3 a different method for determining the relevant class is explored.

3.3 E-SlQve vs. LCS

In this initial test the results of E-Sl@Qve are compared with the results of
the Linguistical Classification System (LCS ([3])). The purpose of this test
is to compare incremental learning (as in E-SlQve) with batched learning
(as in LCS) for the Balanced Winnow algorithm (2.2).

First the corpora used in the experiments are described. Then some mea-
sures are defined to determine the success of classification. Finally the setup
and results of experiments are described.

3.3.1 Corpora

In this thesis two corpora are used to perform experiments. One corpus
(Reuters mono subset) is no email corpus, but consists of short newspaper
articles, which have a good likeness with email messages. Because it is known
that the documents in this corpus are very well pre-classified, this corpus
is very useful for running experiments. The other corpus (Edmond) is an
email corpus. This corpus has been created especially for this thesis, which
means that no experiences of running experiments on this corpus exist.

Reuters mono subset corpus

The Reuters mono subset corpus consists of a random selection of 9090 pre-
classified documents from the well-known Apte subset of the Reuters 21578
corpus [1]. The documents are short (mono-classified) newspaper articles
very unevenly distributed over 66 classes. Because we are not interested in
classifying a huge number of documents, a subset of this corpus was created.
Important criteria for the subset are: a reasonable number of classes should
be taken, the uneven distribution of documents over the classes has to remain

Chapter 3 Incremental learning 18

intact, and all classes should contain at least 10 example documents. The
corpus is called the Reuters mono subset corpus. In table 3.1 the statistics
for the Reuters mono subset corpus are depicted.

Number of documents 3065
Number of classes 15
Total number of words in corpus 404825
Number of unique words in corpus 16169
Average number of words per document 132
Average number of unique words per document | 75
Smallest number of documents in a class 12
Largest number of documents in a class 701

Table 3.1: Statistics for the Reuters mono subset corpus.

Edmond corpus

The Edmond corpus consists of real emails from two running projects within
the company Edmond R&D. The class structure and the classification of the
emails were manually constructed. The two projects are merged into a single
corpus to get a larger document set. In table 3.2 the statistics for this corpus
are depicted.

Number of documents 1134
Number of classes 18
Total number of words in corpus 264552
Number of unique words in corpus 15327
Average number of words per document 233
Average number of unique words per document | 121
Smallest number of documents in a class 8
Largest number of documents in a class 130

Table 3.2: Statistics for the Edmond corpus.

3.3.2 Measures: Precision, Recall, Accuracy

In determining the success of classification, the measures Precision, Recall
and Accuracy are used throughout this thesis. These measures are based on
several quantities that must be tracked for every class during the classifi-
cation process. The quantities are:

3.3 E-Sl@ve vs. LCS 19

e RS = Relevant Selected, the number of relevant documents, classi-
fied as relevant.

e RNS = Relevant Not Selected, the number of relevant documents,
classified as irrelevant.

e NRS = Not Relevant Selected, the number of irrelevant documents,
classified as relevant.

e NRNS = Not Relevant Not Selected, the number of irrelevant doc-
uments, classified as irrelevant.

Now we can define Precision and Recall as follows:

Precision = RiS
T RS+ NRS
RS
ccall = —————
Recall = e 7Ng

To obtain a single measure for the whole corpus, the average Precision or
Recall is used. Two ways of averaging can be distinguished:

1. Micro average
The Precision (and Recall) is calculated by summing the quantities
over all classes. This average is dominated by the large classes (those
with many training documents).

2. Macro average
The Precision (and Recall) is calculated by summing the Precision
(and Recall) for every class and then dividing it by the number of
classes. This average is dominated by the small classes.

In mono-classification, micro-averaged Precision equals micro-averaged
Recall. This is explained as follows. When the algorithm classifies a docu-
ment d in a class ¢;, for which it is not relevant (the algorithm has made a
mistake), then NRS,, is increased by one. At the same time, say that d had
to be classified in class ¢j, RNS.; is increased by one. Consequently, the
values of NRS and RN S in the above definitions of Precision and Recall are
equal (as the quantities of all classes are summed). The macro-averaged
Precision and Recall usually are not equal.

A good measure to indicate the Accuracy of the algorithm is the F'7-measure.
This measure is defined such that Precision and Recall are assigned equal
importance:

2

1 1
Precision + Recall

F1=

Chapter 3 Incremental learning 20

Note that this implies for micro-averaging that:

Flyiero = Precisionmgicro = Recallmicro

In the rest of this thesis Accuracymicro (= Flpmicro), and Accuracymacro
(= Flpaero) are used to determine the accuracy of classification results.

3.3.3 Experiment: Learning behaviour
Global setup

Several tests on both the Reuters mono subset corpus and Edmond corpus
were performed. For this purpose these corpora were split into a train set
and a test set. The pre-classifications of the documents in the corpus is
used to provide the “perfect” relevance feedback. Documents in the train
set are used to train classifiers, while documents in the test set are used to
determine the accuracy of the trained classifiers. For both corpora a train
set was choosen such that it consists of 75% of the documents in the corpus.
The test set consists of the remaining 25% of the documents in the corpus.
Tests on several different train sets and test sets were performed to get more
reliable results.

Both corpora were partitioned in four parts: pl, p2, p3 and p4, each time
taking one part as the test set and the other three parts as the train set. In
this way, four separate tests for each corpus are acquired:

1. train set = {p1,p2, p3}, test set = {p4}

N

. train set = {pl, p2, p4}, test set = {p3}

w

. train set = {pl, p3, p4}, test set = {p2}

4. train set = {p2,p3,pd}, test set = {pl}

In each test the algorithm trains on increasing parts of the train set (called
epochs), so that the learning behaviour of both systems can be compared.
The results of all four tests were averaged to determine the final Accuracymicro
and Accuracymacro (3.3.2).

E-Sl@ve specific setup

Because Balanced Winnow is sensitive to the ordering of training documents,
and E-SlQ@Qve (incremental learning) does not train iteratively on a batch
of documents, all four tests were performed 10 times, each time using a

3.3 E-Sl@ve vs. LCS 21

randomly shuffled version of the train set. For all four tests the results were
averaged.

The settings that were used for E-S1@ve during this experiment are depicted
in table 3.3.

term strengths : sgrt
a @ 1.1
s 09
ot = 1.1
6~ : 09

Table 3.3: Test settings for E-SlQve.

LCS specific setup

In contrast with E-Sl@Qve, LCS does not need different shuffled versions of
each train set, because the system iteratively trains on all documents out of
the train set, internally shuffling the train set after each iteration. Because
the results of two runs of the same test may vary (caused by the sensitivity
to the ordering of training documents), each test was performed 10 times
and the results were averaged.

The settings that were used for LCS during this experiment are depicted in
table 3.4.

term strengths : sqrt
normalize : linear

term selection : off
a : 1.1

6 : 09

ot 1.1

6~ : 09

maxiters : 5

Table 3.4: Test settings for LCS.

Main differences

Note that the main differences between E-S1Qve and LCS are:

e LCS performs (max.) 5 iterations on the train set (batched learning),
wile E-Sl@ve performs no iterations at all (incremental learning). A

Chapter 3 Incremental learning 22

situation in which E-Sl@Qve performs multiple iterations with one doc-
ument (Aggressive- Training) is explored later in this thesis in 4.2.

e LCS collects statistics on the whole train set, while E-Sl@Qve only has
statistics upto the number of documents that have been processed cur-
rently, starting with no statistics at all. Therefore, LCS starts with
class profiles that are initially filled with all (initially weighted) fea-
tures from documents in the corpus (assuming that no term selection is
used), while E-Sl@ve starts with class profiles that are initially empty,
extending them with features while documents are processed.

3.3.4 Results: Learning behaviour
Reuters mono subset corpus

The Accuracymicro (3.3.2) is depicted for both systems in figure 3.1. In a
real-life situation, this measure is most indicative, as it denotes the number
of “real-time” correctly classified messages. The graph shows us that E-
Sl@ve performs well, as it starts a little lower than LCS, but then comes
back and performs roughly equal to LCS.

Reuters mono subset corpus
100

— L‘CS (micro)
---x-—- E-Sl@ve (micro)

90 /x/%w
85 /{

70

Accuracy

65

60
500 1000 1500 2000 2500

Number of documents trained

Figure 3.1: E-Sl@Qve vs. LCS, Accuracy, Reuters mono subset corpus.

The Accuracymicro measure is dominated by the large classes (those with
many training documents). In order to get an indication of the contribution
to the overall classification accuracy for small and large classes, the micro-
averaged results have to be compared with the macro-averaged results
(as these are dominated by the small classes).

The results of this micro/macro comparison are depicted in figure 3.2. The
graph depicted in this figure shows that the Accuracymaero for LCS is ini-
tially a lot higher than the Accuracymgero for E-SlQve, while for larger num-

3.3 E-Sl@ve vs. LCS 23

bers of training examples there is only a small advantage for LCS. Therefore,
as the micro-averaged results of both systems were roughly equal, it might
be supposed that on this corpus LCS learns small classes (those with few
training documents) a little better than E-Sl@ve does. To be sure about
this, a graph is created that shows the averaged accuracy for a class accord-
ing to its number of training examples. This graph is depicted in figure 3.3.
Note that the graph is obtained by counting for all classes, per epoch, the
number of training documents, averaging the results (F1-measure (3.3.2))
for those classes with an equal number of training documents.

Reuters mono subset corpus
100

% B 5
g
80
g
5 70 g —+— LCS (micro) q
8 N ---x--- E-Sl@ve (micro)
< * ---%--- LCS (macro)
& E-Sl@ve (macro)
|
60 X
50
o
40
0 500 1000 1500 2000 2500

Number of documents trained

Figure 3.2: E-Sl@ve vs. LCS, micro/macro comparison, Reuters mono sub-
set corpus.

Reuters mono subset corpus
100

¥ A KKt
X X /
M\«W RO
Vi
80 %
)(X
¥
[

60 r;
g
5 X
g <
<]

40 - —— LCS

| ----- E-Sl@ve
>’<>‘<
20 ¥
X
0
0 10 20 30 40 50 60

Number of training documents in a class

Figure 3.3: E-Sl@ve vs. LLCS, class accuracy, Reuters mono subset corpus.

As the graph depicted in figure 3.3 shows, LLCS indeed learns small classes
better than E-Sl@Qve does. For classes with more than 20 training examples

Chapter 3 Incremental learning 24

both systems perform roughly equal.

Edmond corpus

For the Edmond corpus, the Accuracymiero for both systems is depicted in
figure 3.4. As the graph depicted in this figure shows, LCS performs roughly
5% better at start and ends up with an accuracy that is roughly 3% better
compared to E-SlQve.

Edmond corpus

100 . .
—+— LCS (micro)
----- E-Sl@ve (micro)

90

——
/*//v——m#x
L — . -
80 - - :

Accuracy

70 /

60

50

40

0 100 200 300 400 500 600 700 800 900
Number of documents trained

Figure 3.4: E-SlQve vs. LCS, Accuracy, Edmond corpus.

It is obvious that, looking at the Accuracymicro, LCS performs better than
E-Sl@ve on this corpus, while both systems performed roughly equal on the
Reuters mono subset corpus. An explanation for this could be that the
Edmond corpus contains more “noise” on the pre-classification of its doc-
uments compared to the Reuters mono subset corpus. This “noise” causes
that Balanced Winnow needs more iterations to learn good class profiles.
Because E-Sl@Qve does not (yet) perform any iterations (and LCS does), this
might explain why LCS performs better than E-Sl@Qve on the Edmond cor-
pus, while both systems perform equal on the Reuters mono subset corpus.

Note that the overall lower level of accuracy achieved on this corpus (com-
pared to the Reuters mono subset corpus) can be explained by the fact that
the Edmond corpus is roughly three times smaller than the Reuters mono
subset corpus (which means that there are less training examples).

As was done for the Reuters mono subset corpus, a micro/macro comparison
has been depicted in figure 3.5. The graph shows that the Accuracymaero for
LCS is a lot higher than the Accuracymqero for E-S1Qve (at start it is even
higher than the Accuracymicro for E-Sl@Qve). Therefore it might be supposed
that (for this corpus) LCS learns small classes a lot better compared to E-
Sl@ve. To be sure about this, the graph depicted in figure 3.6 was created

3.3 E-Sl@ve vs. LCS

(which denotes the averaged accuracy for a class according to its number
of training examples). This graph shows that LCS indeed performs a lot
better on small classes. Even for larger classes LCS performs significantly

better.

100

80

Accuracy
~
S

40

Figure 3.5: E-Sl@ve vs. LCS, micro/macro comparison, Edmond corpus.

100

Edmond corpus

T T
—+— LCS (micro)
---%--- E-Sl@ve (micro)
---%--- LCS (macro)

2] E-Sl@ve (macro)

L

K

2]

100

200

300 400 500 600
Number of documents trained

Edmond corpus

700

800 900

80

— Lcs
-—x--- E-Sl@ve

¥

60

Xy

Accuracy

40

20

Figure 3.6: E-SlQve vs. LCS, class accuracy, Edmond corpus.

Conclusion

The results of this experiment show that, for small numbers of training ex-
amples, LCS performs better than E-Sl@Qve. For larger numbers of training
examples, both systems performed roughly equal on the Reuters mono sub-
set corpus, while on the Edmond corpus L.CS performs roughly 3% to 5%

10

better compared to E-Sl@ve.

15 2 25
Number of training documents in a class

30

35

40

Chapter 3 Incremental learning 26

An explanation for the fact that LCS performs better than E-Sl@ve on the
Edmond corpus, while on the Reuters mono subset corpus both systems
perform roughly equal, could be that the Edmond corpus contains more
“noise” on the pre-classification of its documents compared to the Reuters
mono subset corpus. This “noise” causes that Balanced Winnow needs more
iterations to learn good class profiles. Because E-Sl@Qve does not (yet) per-
form any iterations (and LCS does), this might explain why LCS performs
better than E-Sl@ve on the Edmond corpus, while both systems perform
equal on the Reuters mono subset corpus.

In conclusion, it may be stated that the “incremental” Balanced Winnow
performs very well.

3.3.5 Experiment: Mistake behaviour

In this experiment the sort of classification errors of both systems are com-
pared.

In the previous experiment (3.3.3) we have seen that (after a reasonable num-
ber of training examples) E-Sl@ve (incremental learning) performs roughly
as well as LCS (batched learning) on the Reuters mono subset corpus. This
implies that both systems roughly make the same number of mistakes (wrong
classifications). Interesting to know is: do both systems make the same sort
of classification errors? This experiment explores this issue.

Global setup

Four tests on the Reuters mono subset corpus were performed, using the
same train sets, test sets, and settings for E-Sl@ve and LCS as in 3.3.3.
This time, training on increasing parts of the train set was not done, as we
are not interested in the learning behaviour.

For each of the four tests, the “Top 6” of best classes for both systems were
determined. For this purpose, every test was performed 10 times, each time
using a randomly shuffled version of the train set. The “Top 6” consists
of those classes that have the lowest average local ErrorRate. The local
ErrorRate for a class ¢ is defined as:

RNS.+ NRS.
N

ErrorRate, =

with N = RS + RNS + NRS + NRNS (see 3.3.2).

For all classes the 10 local ErrorRates are summed and averaged. The classes
with the lowest average local ErrorRate form the “Top 6”.

3.3 E-Sl@ve vs. LCS 27

3.3.6 Results: Mistake behaviour

The results were satisfying, as both systems appeared to have an equal “Top
6”7 in all four tests. For one test, the results are depicted in table 3.5.

Top 6 avg. ErrorRate LCS | avg. ErrorRate E-SlQve
Cocoa 0.10 0.07
Coffee 0.00 0.00
Gold 0.20 0.07
Iron-steel 0.07 0.13
Nat-gas 0.00 0.10
Sugar 0.00 0.00

Table 3.5: Top 6 classes for E-Sl@Qve and LCS.

3.3.7 Performance

To provide an indication of the performance of E-Sl@ve (in training and
testing documents), a small test on the Edmond corpus was performed for
LCS and E-Sl@ve. The same test was performed 10 times, after which the
results were averaged. The settings for both systems were the same as in
3.3.3.

The statistics of this test are depicted in table 3.6:

train set : 850 documents (1518 KByte)
test set : 284 documents (519 KByte)
total feature space : 14379 (unique) features
number of classes : 18

Table 3.6: Statistics of speed performance test.

E-SlQ@ve results

The performance of E-SlQve is:

Training time: 6.93 sec
Testing time: 1.67 sec

Note that first all documents were cached. Caching all documents (2037
KByte) took roughly 11.70 seconds.

In conclusion, as an average document’s size in this corpus is roughly 1.8
KBytes, E-Sl@Qve needs 0.0082 seconds to train a message, and needs 0.0058
seconds to test a message.

Chapter 3 Incremental learning 28

LCS

The performance of LCS is:

Training time: 2.68 sec
Testing time: 0.95 sec

Caching all documents (2037 KByte) took roughly 3.51 seconds.

In conclusion, as an average document’s size in this corpus is roughly 1.8
KBytes, LCS needs 0.0032 seconds to train a message, and needs 0.0033
seconds to test a message.

The results show that the performance of LCS is better compared to E-
Sl@ve. Note that LCS is implemented in C++ (executive code), while E-
Sl@ve is implemented in Java (interpreted code).

3.4 Conclusion

The results of experiments in this chapter showed that the overall perfor-
mance of incremental learning applied to Balanced Winnow is good. For
small numbers of training examples E-SlQve (incremental learning) did not
perform as well as LCS (batched learning), but for larger numbers of train-
ing examples it performed roughly equal to LCS, provide that the corpus
contains little “noise”.

The last experiment (3.3.5) showed that the global classification errors made
by both systems do not differ, as the “Top 6” of best classes were equal for
both systems.

According to these results we might conclude that incremental learning for
Balanced Winnow can be really promising in automatic email classification.
In the next chapter, an even higher classification accuracy with E-SlQve is
sought for, by exploring some (possible) optimalisations.

Chapter 4

Optimalisations

In the previous chapter it was shown that the overall classification accuracy
of E-Sl@ve is good. In this chapter some (possible) improvements to E-SlQve
are explored, in order to achieve an even higher accuracy. Respectively
Turbo-Training, Aggressive-Training and Certainty Based Classification are
introduced.

4.1 Turbo-Training

In a batched learning situation (2.3), Balanced Winnow can perform mul-
tiple iterations on all documents in a train set. In an incremental learning
situation this is not possible, because each time a new document arrives,
the classifiers are trained with this one (new) document. Therefore, in the
incremental learning situation it is even more important than in the batched
learning situation to get the maximum amount of information out of each
document. To achieve this, a new heuristic is introduced, which is called
Turbo- Training.

4.1.1 What is Turbo-Training

With Turbo- Training Balanced Winnow (which is mistake-driven (2.2)) should
learn more from each mistake. This may be achieved by speeding up the
promotion and demotion of the weights of active terms, according to the
score of the document. Therefore the update rules (2.2.1) are changed as
follows:

Positive example
In case document d is labeled positive for a class ¢ (d € ¢), the active terms
in class ¢ are promoted 1, 2 or 3 times according to the score S.(d):

Chapter 4 Optimalisations 30

Se(d) < 6 — promote(3)
Sc.(d) < 6(=1) — promote(2)
Se(d) < 67 — promote(l) (= thick-threshold heuristic (2.2.1))

in which the function promote is defined as follows:

promote(turbofactor) : wt := wt x qturbefactor.

W= w % ﬁturbofactor;

Negative example

In case document d is labeled negative for a class ¢ (d ¢ c), the active terms
in class ¢ are demoted 1, 2 or 3 times according to the score S.(d):

Se(d) > 67 — demote(3)
Sc(d) > 6(=1) — demote(2)
Sc(d) > 6 — demote(1) (= thick-threshold heuristic (2.2.1))

in which the function demote is defined as follows:

demote(turbofactor) : wt := wt x glurbofactor,
turbo factor .

W I=wW ko ;

Note that this heuristic is an alternative to iterative training that conserves
incrementality.

4.1.2 Experiment

In this experiment, the results of Turbo-Training are compared with the
(previously obtained (3.3.3)) results of normal training.

The global setup, and settings for both systems, is choosen the same as in
3.3.3. Note that the same order of the training documents in the different
shuffled versions of the train set was used, in order to obtain reliable results.

4.1.3 Results
Reuters mono subset corpus

In figures 4.1 and 4.2, the results of this experiment for the Reuters mono
subset corpus are depicted. Examining the learning curve of the graph
depicted in figure 4.1, it can be seen that Turbo-Training speeds up the
initial learning process extremely. The graph depicted in figure 4.2 provides
an even better view, as it can be seen that Turbo-Training increases the
accuracy for a class with very few training examples with roughly 10% to
20% (on a test set consisting of 767 documents). When a class contains
more than 20 training examples, the results of Turbo-Training and normal
training are roughly equal.

4.1 Turbo-Training

31

Reuters mono subset corpus

100

80

Accuracy
~
=]

e —— Turbo-Training ON (micro) .
£ ¥ ---%--- Turbo-Training OFF (micro)
; -~ Turbo-Training ON (macro)
; 8-~ Turbo-Training OFF (macro)
Jd
*
o

40

Figure 4.1: Turbo-Training, Reuters mono subset corpus.

100

80

60

Accuracy

40

20

500

1000

1500 2000 2500
Number of documents trained

Reuters mono subset corpus

IV o
X

A
xX
*X’
"’ —+— Turbo-Training
B ---x--- Normal Training
X)‘(
I
X
10 20 30 40 50 60

Number of training documents in a class

Figure 4.2: Turbo-Training, class accuracy, Reuters mono subset corpus.

Chapter 4 Optimalisations 32

Edmond corpus

The results for the Edmond corpus are depicted in figures 4.3 and 4.4. Be-
cause this corpus contains far less training examples compared to the Reuters
mono subset corpus, Turbo-Training speeds up the learning process for the
whole range of numbers of training documents (which actually can be seen
as the initial range). The graph depicted in figure 4.4 provides a better view,
as it shows that Turbo- Training increases the accuracy for classes containing
a maximum of 17 training examples. When a class contains more than 17
training examples, the results of Turbo-Training are roughly equal to the
results of normal training.

Edmond corpus
100

T T T T
—+— Turbo-Training ON (micro)
---x--- Turbo-Training OFF (micro)
---%--- Turbo-Training ON (macro)

@ Turbo-Training OFF (macro)

90

%

ok

o

80 - 7

70

Accuracy

60

50 <

40

0 100 200 300 400 500 600 700 800 900
Number of documents trained

Figure 4.3: Turbo-Training, Edmond corpus.

Edmond corpus
100

T T
—+— Turbo-Training
---%--- Normal Training

80 A e N /’(2&)

NN T

60

Accuracy

40

20

0 5 10 15 20 25 30 35 40
Number of documents in a class

Figure 4.4: Turbo-Training, class accuracy, Edmond corpus.

4.2 Aggressive-Training 33

Conclusion

The conclusion for this experiment is very simple: Turbo-Training is a per-
fect alternative to iterative training, which conserves incrementality, as it
speeds up the initial learning process by learning classes with small numbers
of training examples better.

4.2 Aggressive-Training

In an incremental learning situation it is not possible to train iteratively
on all documents in a train set. But it is possible to train iteratively with
one document. This is exactly what Aggressive- Training does. Each email
that arrives will be trained iteratively until it does not causes a mistake
anymore. This means that a negative example for a class ¢ will be trained
iteratively until it obtains a score for class ¢ that is below 0.9 (= #7). On
the other hand, a positive example for a class ¢ will be trained iteratively
until it obtains a score for class ¢ that is above 1.1 (= 7).

4.2.1 Experiment

In this experiment, the results of Aggressive-Training are compared with
the (previously obtained (3.3.3)) results of normal training.

The global setup, and settings for both systems, are equal to those in the
previous experiment (4.1.2).

4.2.2 Results
Reuters mono subset corpus

The results for the Reuters mono subset corpus are depicted in figures 4.5
and 4.6. Examining the learning curve of the graph depicted in figure 4.5, it
can be seen that Aggressive- Training speeds up the initial learning process a
little. The graph depicted in figure 4.6 confirms this, as Aggressive- Training
increases the accuracy for classes with few training examples. For classes
that consist of more than 20 training examples, the results of Aggressive-
Training roughly equal the results of normal training.

Chapter 4 Optimalisations

34

Reuters mono subset corpus

100

90

80

70

Accuracy

60

ok,

—+— Agl ive-Training ON (micro)
---%--- Aggressive-Training OFF (micro)
---%--- Aggressive-Training ON (macro)

Aggressive-Training OFF (macro)

50

.

40

Figure 4.5: Aggressive-Training, Reuters mono subset corpus.

100

80

60

Accuracy

40

20

500

1000

1500 2000

Number of documents trained

Reuters mono subset corpus

2500

N

e VAR A

i >
XXX

gg k
- Normal Training

Training

10

20

30

40 50

Number of training documents in a class

60

Figure 4.6: Aggressive-Training, class accuracy Reuters mono subset corpus.

4.2 Aggressive-Training 35

Edmond corpus

The results for the Edmond corpus are depicted in figures 4.7 and 4.8. For
this corpus also, a slight speedup in the learning process can be achieved.

Edmond corpus

100
—07‘ Aggressl\‘/e-Tramlng bN (mlcro)‘
---%--- Aggressive-Training OFF (micro)
---%--- Aggressive-Training ON (macro)
8- Aggressive-Training OFF (macro)
90
80 - -
a
>
)
<]
5 70
8
<
60 4
50 4
*
e
40
0 100 200 300 400 500 600 700 800 900

Number of documents trained

Figure 4.7: Aggressive-Training, Edmond corpus.

Edmond corpus

100 T T
—+— Aggressive-Training
---%--- Normal Training
80 A B TN i
o ¥
G
60 -
o)
g
5
8
<
40
20
0
0 5 10 15 20 25 30 35 40

Number of documents in a class

Figure 4.8: Aggressive-Training, Edmond corpus.

Conclusion

In conclusion, it can be stated that Aggressive- Training speeds up the initial
learning process a little, as it learns classes with small numbers of train-
ing examples better. Although Aggressive-Training does not speed up the
learning process as much as Turbo-Training does, the Aggressive- Training
heuristic can be very useful, as it enables the system to de-train and re-train

Chapter 4 Optimalisations 36

classes (see 5.2.1). In chapter 5, the Aggressive- Training heuristic is used in
realising a scenario (negative relevance feedback) for a real-life situation.

4.3 Certainty-based classification

This thesis deals with mono-classification. This means that a new document
must be classified in exactly one class. One way of determining this class,
is to compute the score S.(d) of document d for every class ¢, according to
the current state (weight vector) of the classifiers, and then assign d to the
class for which d obtained the highest score. This is how most applications
work.

However, it is possible that the comparison of the scores for these classes
is not such a good measure in determining the relevant class for a new
document. This can be explained by the fact that a highest score might be
very low for the relevant class according to the scores history of previously
processed documents for that class, while a less higher score might be very
high according to the scores history of previously processed documents for
other classes.

Therefore a different method in determining the relevant class for a new
document is explored. This method uses statistics on the scores of previously
processed documents in determining the destination class for a document.
Scores of positive documents for a class ¢ (ScPos.) and scores of negative
documents for a class ¢ (ScNeg,.) are distinguished:

ScPos, = {s1,82,**,5n}
SCNB_(]C = {sla 82,0 asm}

with n the number of scores of previously processed positive documents and
m the number of scores of previously processed negative documents.

Now, when a new document d arrives, for each class ¢ the yes-probability
and the no-probability is computed. The yes-probability indicates the prob-
ability of d being relevant for class ¢ and the no-probability indicates the
probability of d being irrelevant for class ¢. These probabilities are defined
as follows:

_ RS.(S.(d))
YesProb.(d) = RS.(S.(d)) + NRS.(S.(d))
NoProb(d) RS.(S.(d))

~ RS.(S.(d)) + RNS,(S.(d))

in which S.(d) is the score of document d for class ¢, and RS, RNS and
N RS have the same meaning as in 3.3.2 and are defined as follows:

4.3 Certainty-based classification 37

RS () =|ScPos.[s > 1]

RNS.(v) = |ScPos.[s < 7]
NRS.(y) =|SeNeg.[s >]|

in which +y is a threshold.

Finally, for each class ¢ a certainty measure is obtained, which indicates how
certain it is that document d is relevant or irrelevant for class c:

Cert.(d) = |YesProb.(d) — NoProb.(d)|

Three different cases have to be distinguished, in order to clarify the inter-
pretation for Cert.(d):

1. If YesProb.(d) = NoProb.(d) then the classifier for class ¢ does not
know whether d is relevant or irrelevant for class ¢, as Cert.(d) =0

2. If YesProb.(d) > NoProb.(d) then the classifier for class ¢ predicts
that d is relevant for class ¢ with a certainty of Cert.(d).

3. If YesProb.(d) < NoProb.(d) then the classifier for class ¢ predicts
that d is irrelevant for class ¢ with a certainty of Cert.(d).

A new document d is assigned to a class according to the following assigning
rules:

e If there are x classes (z > 1) for which YesProb.(d) > NoProb.(d)
holds, then document d is assigned to one of those x classes for which
Cert.(d) is highest.

e When the situation is such that for all classes NoProb.(d) > YesProb.(d)
then the algorithm actually tells us that document d is irrelevant for
all classes. When this happens, d is assigned to the class for which
Cert.(d) is lowest, as in that case the algorithm is least sure about his
“no-answer”.

4.3.1 Experiment

In this experiment, the results of Certainty Based Classification are com-
pared with the (previously obtained (3.3.3)) results of normal training.

The global setup, and settings for both systems, are equal to those in the
previous experiments (4.1.2, 4.2.1).

Chapter 4 Optimalisations 38

4.3.2 Results

The results of this experiment are depicted in figures 4.9 and 4.10,

respec-

tively for the Reuters mono subset corpus and Edmond corpus.

100

95

90

85

80

75

Accuracy

70

Reuters mono subset corpus

T T
—+— Normal Classification (micro)
---x--- Certainty Based Classification (micro)

e T
Ty BRIV S x
e

65

60

55

50

500 1000 1500 2000 2500
Number of documents trained

Figure 4.9: Certainty Based Classification, Reuters mono subset corpus.

100

90

80

70

Accuracy

60

50

40

Edmond corpus

T T T T
—+— Normal Classification (micro)
---x--- Certainty Based Classification (micro)

100

200 300 400 500 600 700 800 900
Number of documents trained

Figure 4.10: Certainty Based Classification, Edmond corpus.

According to the results depicted in both graphs, it is obvious that this way
of determining the relevant class for a new document performs worse than
the “standard” method (where a document is classified in the class for which
it obtained the highest score, as described in 3.2.4).

Searching for a cause, it was found that for many of the documents the
algorithm has no “certain” answer, because NoProb.(d) > YesProb.(d) for
all classes c;. So, for these documents, the algorithm actually answers: “I do

not know where to classify this document!”.

The graph depicted in figure

4.4 Conclusion 39

4.11 shows the percentage of documents in the test set for which E-Sl@ve
did not know where to classify them. It can be seen that for small numbers
of training examples the percentage of “uncertain” certified documents is
higher than for large numbers of training examples. This could be explained
by the fact that the scores history of classes is less “certain” when few
documents are trained.

18
16 %
14 \
12 \‘
10

8 \

ol BN

a

\‘x‘,x\ ‘ \0\.,/\‘\

T T
—+— Reuters mono subset corpus (767 docs)
---x--- Edmond corpus (284 docs)

Percentage of “uncertain” certified docs in testset

0 500 1000 1500 2000 2500
Number of documents trained

Figure 4.11: Certainty Based Classification, “uncertain” docs.

In conclusion, Certainty Based Classification decreases the accuracy, partic-
ularly in the initial phase. Therefore, future research on this issue might be
useful.

4.4 Conclusion

Several extensions and modifications to E-Sl@Qve were introduced. The re-
sults were quite satisfying. Turbo-Training is a perfect alternative to iter-
ative training, which conserves incrementality, as it speeds up the initial
learning process by learning small classes better. Aggressive-Training re-
sulted also in a speedup of the learning process, but it does not outperform
Turbo- Training. Nevertheless, the Aggressive- Training heuristic is very use-
ful, as shall be demonstrated in chapter 5. Certainty based classification
did not perform well, as for many documents the system actually did not
know where to classify them, but it might be an interesting issue for future
research.

Chapter 4 Optimalisations

40

Chapter 5

Negative relevance feedback

Relevance feedback is the information about a document that indicates the
class for which that document is relevant, according to the opinion of an
“expert”. The system needs this feedback in order to be able to (incre-
mentally) train with the document. In an experimental environment, the
pre-classification of documents in the corpus can be used as “perfect” rele-
vance feedback (as was done in all our previous experiments). In a real-life
situation, this is impossible, and therefore relevance feedback must be ob-
tained from the user. A difficult point is then to obtain this information such
that the user will not find it annoying. In this chapter, negative relevance
feedback is introduced, which solves this problem elegantly.

5.1 Obtaining relevance feedback

In a real-life situation, when a new email arrives, the global process for
E-Sl@ve should be as follows:

1. Classify the new email according to the current state of the classifiers,
and file this email automatically in the mailfolder that seems to be
most relevant according to this classification.

2. Obtain relevance feedback on the email.

3. Incrementally train all classifiers with the single email, according to
the relevance feedback that was obtained in the previous step.

The bottleneck in this process is the second step. In this step the system
actually needs to know whether the email was classified (and thus filed)
correctly. In case it was not filed correctly, the system needs to know into
which mailfolder it should have been filed. The user has to provide this

Chapter 5 Negative relevance feedback 42

information (relevance feedback) to the system, because the incoming emails
are (usually) not labeled...

Two situations can be distinguished after a new email has been classified.
A “positive” situation and a “negative” situation:

1. Positive situation
the email has been classified (and thus filed) correctly.

2. Negative situation
the email has been classified (and thus filed) incorrectly.

In both situations, the system needs relevance feedback (for incremental
learning purposes). The most simple form of obtaining relevance feedback,
is to prompt the user every time a new email has been filed, and ask him
explicitly for relevance feedback (which has been simulated in all our previous
experiments). This means that, in case the email has been filed correctly,
the user has to confirm this, otherwise the user has to indicate into which
mailfolder the email should have been filed. It is clear that this explicit form
of obtaining relevance feedback imposes an increased burden and increased
cognitive load, as was explored in [20].

The system that has been described in [22] (Swiftfile) uses a more subtle
method. It provides three shortcut buttons above each message, which rep-
resent the “top 3” classes for which the email seems relevant according to the
system. The shortcut buttons can be used to move a message quickly to the
specific mailfolder (class). Important to notice is that Swiftfile does not file
messages automatically, but that it only provides shortcut buttons, which
enables the user to file the message. Implicitly this means that, for every
message, the user still has to tell the system for which class (mailfolder) the
message is most relevant (by clicking on a shortcut button).

5.2 Negative relevance feedback

E-Sl@ve files messages automatically. Messages that are filed into the wrong
mailfolder, will be detected by the user after some time. It is reasonable to
assume that the user will move this message to the correct mailfolder. This
movement should be detected by the system, because it provides relevance
feedback on the classification of the email. Actually the user tells the system:
“Hey, this email should not be filed here, it should be filed there!”. Because
this (implicit) feedback is provided only in a “negative” situation (in which
the system has filed a message into the wrong mailfolder), it is called negative
relevance feedback.

In this chapter, it is explored whether an acceptable level of accuracy can
be achieved with E-SlQve in a real-life situation, when the user only has

5.2 Negative relevance feedback 43

to provide negative relevance feedback. If this is possible, this would imply
that the user only needs little effort in keeping the system “accurate”, as he
only has to move misclassified emails to the correct mailfolder (which should
occur rarely, after an acceptable level of accuracy is achieved).

The only problem with this scenario is, that in this way E-SI@Qve does not
recieve relevance feedback in a “positive” situation, as correctly filed mes-
sages will never be moved to another mailfolder. Fortunately, this can be
solved by slightly modifying the learning process for E-SlQve.

5.2.1 Incremental learning process

E-SlQve needs relevance feedback immediately after a new message has been
filed (see the process in 5.1). As was mentioned before, it is no good option to
let the user provide this information for every message. Therefore, E-Sl@Qve
provides its own relevance feedback. This is realised by assuming (blindly)
that E-Sl@Qve always classifies a (new) message initially correctly, using the
classification results as the relevance feedback. More formally, the process is
as follows:

1. Classify message d into class (mailfolder) ¢, which is the class for
which d seems to be relevant according to the current weight vector
w,, for all classifiers X,,.

2. Obtain relevance feedback: assume (blindly) that class ¢, (step 1) is
the class for which d is relevant.

3. Incrementally train all classifiers X, with message d, using it as a
positive example for class ¢, and as a negative example for all other
classes ¢;, for which i # .

This process ensures that E-S1@ve obtains relevance feedback immediately
after a new message has been classified, without the need for any interaction
with the user, which enables the system to train immediately with this mes-
sage. For messages that are classified initially into the correct class (step 1),
this works fine. Only a problem occurs, when a message is classified into the
wrong class (step 1), because then the system obtains the wrong relevance
feedback (step 2), and therefore trains with this message (step 3), using it
as a positive example for the wrong class and as a negative ezxample for
the correct class (and all other classes). Fortunately, this “damage” can be
repared when the user detects the message was filed into the wrong mail-
folder, and moves the message to the correct mailfolder (providing negative
relevance feedback).

Say that the user moves an email message d from class (mailfolder) ¢, to
class c¢,. This means that, according to the user, E-S1Qve initially made a

Chapter 5 Negative relevance feedback 44

mistake in classifying message d. Consequently, class ¢; has been trained
positive with an irrelevant example, and class ¢, has been trained negative
with a relevant example. Therefore E-SI@Qve has to de-train class ¢, for
message d and has to re-train class c, for message d. This is realised as
follows:

1. De-train
Message d is trained as a negative example for class ¢, (according to
the thick-threshold heuristic (2.2.1)). This is done iteratively, until the
score S, (d) reaches a value below 0. In other words: message d is
demoted for class ¢, until it provides a score below 6~.

2. Re-train
Message d is trained as a positive example for class ¢, (according to
the thick-threshold heurstic (2.2.1)). This is done iteratively, until the
score S, (d) reaches a value above #%. In other words: message d is
promoted for class ¢, until it provides a score above 6.

Note that all other classes ¢;, for which i # y, are also trained with message
d, using it as a negative example for these classes. However, in most cases
this should not be necessary, because the score of message d for all those
classes should be below 6~ already, as d was never trained as a positive
example for those classes.

5.3 Non-delayed negative relevance feedback

In the best case in a real-life situation, negative relevance feedback is provided
immediately. This means that the user detects and moves a misclassified
message immediately, even before the arrival of a new message. This may not
be very realistic, but it provides a first indication of how negative relevance
feedback performs.

5.3.1 Experiment

In this experiment, the results of non-delayed negative relevance feedback
are compared with the (previously obtained) results of Aggressive- Training
(see 4.2).

The experiment was performed on both the Reuters mono subset corpus and
Edmond corpus, using the labeling of documents as the “perfect” relevance
feedback. The global setup (train sets, test sets and parameter settings for
E-Sl@ve) is the same as in 3.3.3. To obtain reliable results, the same order
of training documents in the different shuffled versions of the train set was
used.

5.3 Non-delayed negative relevance feedback 45

Simulation setup

To simulate the situation of non-delayed negative relevance feedback, the
learning process for E-Sl@Qve was as follows:

1. Classify message d into class ¢;, which is the class for which d seems
to be relevant according to the current state of all classifiers X,.

2. Incrementally train all classifiers, using d as a positive example for class
¢; and as a negative example for all other classes. (Assume blindly
that the results in step 1 are correct.)

3. Obtain relevance feedback (by checking the label of message d), which
provides the information: d is relevant for class c,.

4. if c¢; # cy then: de-train class ¢, for message d and re-train class
¢y for message d.

The results of Aggressive-Training (4.2.2) were obtained in a situation which
simulates that the user provides relevance feedback explicitly (as was the
case for all our previous experiments). The learning process for E-SlQve was
as follows:

1. Classify message d into class ¢;, which is the class for which d seems
to be relevant according to the current state of all classifiers X,.

2. Obtain relevance feedback (by checking the label of message d), which
provides the information: d is relevant for class c,.

3. Incrementally train all classifiers, using d as a positive example for
class ¢, and as a negative example for all other classes.

Note that in both simulations, an email is trained iteratively until it does
not cause a mistake anymore (which is called Aggressive-Training...). This
means that a positive example for a class ¢ will be trained iteratively until it
obtains a score for class ¢ that is above 1. A negative example for a class
¢ will be trained iteratively until it obtains a score for class ¢ that is below
0.

5.3.2 Results

The results of this experiment are depicted in figures 5.1 and 5.2, respec-
tively for the Reuters mono subset corpus and Edmond corpus. The results
show that negative relevance feedback performs roughly equal to Aggressive-
Training, and at some points it performs even better. This is striking,
because the opposite was assumed.

Chapter 5 Negative relevance feedback

46

100

95

90

85

80

Accuracy

75

70

65

60

Reuters mono subset corpus

> Feedback
e

T T
—+— Aggressive Training
---%--- Non-Delayed Negative Relevance

e

500

1000 1500 2000

Number of documents trained

2500

Figure 5.1: Non-Delayed Negative Relevance Feedback, Reuters mono subset

corpus

100

90

80

70

Accuracy

60

50

40

Edmond corpus

—»7‘ Aggress\‘ve-Tra\nlng‘ '
i

---x--- Non-Delayed Negative Relevance Feedback
¥
/-‘)\”
100 200 300 400 500 600 700 800

Number of documents trained

900

Figure 5.2: Non-Delayed Negative Relevance Feedback, Edmond corpus

5.4 Delayed negative relevance feedback 47

In a real-life situation it is not likely that a misclassified message will be
detected and moved immediately after it has been filed. For this reason, it
is too early to conclude that the negative relevance feedback scenario works
fine in a real-life situation. The only conclusion for now is, that de-training
and re-training of classes, work extremely well.

5.4 Delayed negative relevance feedback

In a real-life situation, it is not reasonable to assume that the user will pro-
vide negative relevance feedback immediately. Usually there will be a delay
between the moment the system files a message d (into the wrong mailfolder),
and the moment the user moves message d into the correct mailfolder. This
delay could effect the Accuracy of the system, as in the meanwhile new
messages arrive that can be filed (and thus trained) incorrectly due to the
currently (and temporarily) “instable” state of the classifiers. For this pur-
pose, an experiment was performed to see whether the delayed negative
relevance feedback scenario decreases the Accuracy.

5.4.1 Experiment

In this experiment, the results of delayed negative relevance feedback are
compared with the (previously obtained) results of non-delayed negative
relevance feedback (see 5.3.1).

The global setup (all settings, train sets and test sets) for this experiment
is equal to the global setup for the previous experiment.

Simulation setup

To simulate the situation of delayed negative relevance feedback, each mes-
sage d that has been misclassified is assigned a “delay-value”, denoted as dg4.
This delay-value is randomly choosen in the range [, 7], with (6~ < 47,
0~ > 0). If §; = 0, it is assumed that negative relevance feedback on d is
provided immediately, else it is assumed that it takes 64 more messages to
be processed first, before negative relevance feedback is provided on d.

To describe the simulation more formally, a train set T' = {dy,---,d,}, is
defined (n denoting the number of messages in the train set) and a func-
tion Time(d;) which determines the number of messages that have been
processed since message d; was processed.

The process is as follows:

Chapter 5 Negative relevance feedback 48

1. Classify message d; into class ¢;, which is the class for which d; seems
to be relevant according to the current state of all classifiers X, .

2. Incrementally train all classifiers, using d; as a positive example for
class ¢, and as a negative example for all other classes.

3. Obtain relevance feedback (by checking the label of message d;), which
provides the information: d; is relevant for class c,.

4. if ¢; # ¢, then: randomly assign a delay-value d,4; to d;.
(with 6~ < dg, < d7).

5. for all messages d; that were assigned a delay d4, do
if Time(d;) > 64, then: use message d; for de-training and re-
training of classes.

Note that when range [d~,d"] is choosen as [0,0], the situation of non-
delayed negative relevance feedback is obtained. Note also that there never
need to be more than d* messages queued (which are messages d for which

Time(d) < 04 holds).

In this experiment, several tests were performed, using the following ranges:
[d—,d"] =1]0,0] (equals non-delayed negative relevance feedback)

5.4.2 Results

The results of this experiment are depicted in figures 5.3 and 5.4. It can
be seen that a wider delay range causes a more decreased accuracy of the
system, particularly for small numbers of training documents. For large
numbers of training documents (> 800), the results seem to converge.

From the results of this experiment we may conlcude that it indeed is pos-
sible to obtain a very acceptable level of accuracy with E-Sl@Qve when the
user only has to provide negative relevance feedback, provide that negative
relevance feedback is given on all messages that have been misclassified.

5.4.3 Lazyness

In real life, it could happen that some misclassified messages are never moved
to the correct mailfolder. When this happens, most of the times, it is caused
by the “lazyness” of users. Consequently, the system will be a little “con-
fused”, as it is actually trained with incorrect information (which is never
corrected). To explore the effect of this confusion on the accuracy of the

5.4 Delayed negative relevance feedback 49

Accuracy

Reuters mono subset corpus

100
% W -
90
85
80
75
70 —+— Non-Delayed Negative Relevance Feedback (Delay: 0-0) -
---%--- Negative Relevance Feedback, Delay: 0-10
---*--- Negative Relevance Feedback, Delay: 0-20
65 "" -a-- Negative Relevance Feedback, Delay: 0-50 4
*
*
60 [
55
0 500 1000 1500 2000 2500

Number of documents trained

Figure 5.3: Delayed Negative Relevance Feedback, Reuters mono subset

corpus

Accuracy

Figure 5.4:

Edmond corpus

100
L Non-Delayed Negative Relevance Feedback (Delay: 0-0)
---x--- Negative Relevance Feedback, Delay: 0-10
---%--- Negative Relevance Feedback, Delay: 0-20
8-~ Negative , Delay: 0-50
90
80
70
60
50 1
40

100 200 300 400 500 600 700 800 900
Number of documents trained

Delayed Negative Relevance Feedback, Edmond corpus

Chapter 5 Negative relevance feedback 50

system, an additional experiment is performed which simulates a delayed
negative relevance feedback scenario in which it is assumed that a certain
percentage of misclassified messages will never be moved to the correct
mailfolder (and therefore will not be used for de-training and re-training
classes).

In figures 5.5 and 5.6 the results are depicted for situations in which 0%,
10% and 20% of the number of misclassified messages is assumed to be never
moved to the correct mailfolder. The delay range was set on [0, 20].

Reuters mono subset corpus

100
T
95 e s |
90
85
> 80
<]
5
8
< 75
70 —+— Negative Relevance Feedback, Delay: 0-20, Lazy: 0% 1
---x--- Negative Relevance Feedback, Delay: 0-20, Lazy: 10%
---*--- Negative Relevance Feedback, Delay: 0-20, Lazy: 20%
65 i
60 G
*
55
0 500 1000 1500 2000 2500

Number of documents trained

Figure 5.5: Delayed Negative Relevance Feedback, Reuters mono subset
corpus

Edmond corpus

100 T T T T T T
—+— Negative Relevance Feedback, Delay: 0-20, Lazy: 0%
---%--- Negative Relevance Feedback, Delay: 0-20, Lazy: 10%
---*--- Negative Relevance Feedback, Delay: 0-20, Lazy: 20%
90
80
o)
s
3 70
8
<
60
50 4
*
40
0 100 200 300 400 500 600 700 800 900

Number of documents trained

Figure 5.6: Delayed Negative Relevance Feedback, Edmond corpus

The graphs show that, as was supposed, a higher “lazy” percentage results
in a little decreased accuracy. Fortunately, in real life, the user shall not

5.5 Conclusion 51

benefit by not moving misclassified messages to the correct folder, which
therefore makes it reasonable to assume that this occurs rarely.

5.5 Conclusion

In this chapter an elegant solution to the problem of obtaining relevance
feedback in a real-life situation has been provided: the negative relevance
feedback scenario (5.2). Negative relevance feedback ensures that the user
only needs little effort in keeping the system accurate, as he only needs to
move misclassified messages to the correct mailfolder (which should occur
rarely, after an acceptable level of accuracy is achieved).

Results of experiments that simulate the negative relevance feedback scenario
show that, even in the presence of “lazy” users, a very acceptable level of
accuracy can be achieved. Therefore it might be concluded that E-Sl@Qve
could become a useful and valuable addition to any (Java-compliant) email-
client.

Chapter 5 Negative relevance feedback

52

Chapter 6

Conclusion

Looking at the results of experiments performed in this thesis, the overall
conclusion is that E-S1Qve could become a useful and valuable addition to
any Java-compliant email-client.

The core of E-Sl@Qve, an “incremental” Balanced Winnow (learning algo-
rithm), has (empirically) proved to be very accurate in classifying emails
(and short newspaper articles). Initially comparing E-Sl@Qve to LCS, a sys-
tem that uses Balanced Winnow in a “batched” fashion, the results of E-
Sl@Qve were, after a reasonable number of training examples, roughly as
good as the results of LCS. Only for small numbers of training examples,
E-Sl@Qve performed worse than LCS. According to these results, E-Sl@ve
seemed already promising in automatic email classification, but an even
higher accuracy with E-Sl@ve was sought for by exploring some (possible)
optimalisation.

Three (possible) optimalisations for E-Sl@ve were explored. Two of those
slightly change the training heuristic of Balanced Winnow: Turbo-Training
and Aggressive- Training. The third provided a different heuristic in classi-
fying a new message: Certainty Based Classification.

The results of Certainty Based Classification, which ensures that new mes-
sages are classified according to a “certainty”, were not satisfying. The main
reason for this was that, particularly for small numbers of training examples,
classifiers were extremely “uncertain” about their prediction.

On the other hand, the results of Turbo-Training and Aggressive- Training
were quite satisfying. Turbo-Training, an alternative for iterative training
which conserves incrementality, resulted in a strong speedup of the initial
learning process, as classes consisting of only few training examples were
learned much better. Aggressive- Training, which ensures that a new mes-
sage is trained iteratively until the algorithm predicts the correct class for
this message, resulted in a slight speedup of the initial learning process.

Chapter 6 Conclusion 54

Although Aggressive-Training did not perform as well as Turbo- Training,
it is useful in realising a scenario suitable for a real-life situation (negative
relevance feedback).

E-Sl@Qve (incrementally) learns from (new) messages according to the feed-
back that is provided on messages that have been classified. In a real-life
situation, this relevance feedback must be obtained from the user in order
to remain accurate. A difficult point is then to obtain relevance feedback
such that the user will not find it annoying. In this thesis an elegant solu-
tion to this problem has been provided, named negative relevance feedback.
Negative relevance feedback ensures that the user only needs little effort in
keeping the system accurate, as he only needs to move misclassified messages
to the correct class (mailfolder). Results of experiments (which simulated
a real-life situation) have shown that, using negative relevance feedback, a
high level of accuracy can be achieved.

6.1 Future research

The ideas for the issues mentioned in this section were all acquired during
the production of this thesis, but there was no time left to explore them.

6.1.1 Term selection

Most classes depend only on a small subset of indicative features and not
on all the features that occur in documents that belong to that specific
category. Therefore, it seems plausible to discard “noisy” features for every
class, as it improves efficiency and possibly also the accuracy of the classifier.
Some classification systems (like LCS, see [12]) have a feature selection pre-
processing stage. In an incremental approach this is not possible, because
the class profiles are build “on-the-fly”, adding new features as incoming
documents are processed. Therefore, a proposal for a new term selection
technique that could be used for incremental training (with Balanced Win-
now) is introduced.

Motion-based term selection

As in [13] is shown, the Winnow k-steps strategy does not work well. There-
fore another strategy, based on the number of promotions and demotions
(together called motions) of a feature, is proposed.

This technique uses a UC' ratio, which is defined as follows:

_ |promoy — demoy|

ucC

promoy + demoy

6.1 Future research 55

in which promoy is the number of promotions for feature f and demoy
the number of demotions for that feature. This ratio is an indicator of
the uncertainty (see [17]) in the contribution of this feature to the score.
Apart from the case in which promoy = demoy = 0, this value more or less
decreases from 1 to a small number.

Example approaches for selecting terms (explicitly or implicitly) are:

¢ Explicit

— discard all terms for which UC' < k holds, in which £ is a certain
threshold.

— select the top k terms per class with the highest UC.

e Implicit
adapt the score computation of Balanced Winnow, as follows:

m

Se(d) = > (wl (f;) —w, (f}) - sa(f;) - UCy, > 6

J=1

Note that for the explicit approaches something “smart” has to be done,
as features that have been discarded could become important again in the
future.

6.1.2 Threshold range

Recent research with LCS ! explored the effect of different values for 6~
and 0% on the classification accuracy of Balanced Winnow. Performing an
experiment in which for several different combinations of §~ and 6T the
classification accuracy was determined, it was found that using 6= = 0.6
and 87 = 3.0 resulted in an increased accuracy of roughly 3% compared to
results that were already very good.

Because LCS uses Balanced Winnow in a “batched” fashion, it is useful to
perform a similar experiment for E-Sl@ve (which uses Balanced Winnow
in an “incremental” fashion) to check whether this results in an increased
accuracy also.

"Linguistical Classification System, developed at the Katholieke Universiteit of
Nijmegen

Chapter 6 Conclusion 56

A quick test using 6~ = 0.6 and 7 = 3.0, yielded the results as depicted in
figures 6.1 and 6.2.

Reuters mono subset corpus

100
90
80
>
8 ;o
5 70 e o —+— teta-: 0.6, teta+: 3.0 (micro) -
8 X/ %= tel 9, teta+: 1.1 (micro)
< S tel 6, teta+: 3.0 (macro)
& & teta-: 0.9, teta+: 1.1 (macro)
60 v'
*
50 il
40
0 500 1000 1500 2000 2500

Number of documents trained

Figure 6.1: Theta test, Reuters mono subset corpus

Edmond corpus

100 T T T
—+— teta-: 0.6, teta+: 3.0 (micro)
--%--- teta-: 0.9, teta+: 1.1 (micro)
---%--- teta-: 0.6, teta+: 3.0 (macro)
a-- teta-: 0.9, teta+: 1.1 (macro)
90
L
80 ”
>
)
@
5 70
3
S
<
60
X
*
50
o
40
0 100 200 300 700 800 900

400 500
Number of documents trained

Figure 6.2: Theta test, Edmond corpus

From the results is clear that modifying the thresholds increases the over-
all learning behaviour quite extremely. Note that the Aggressive- Training
heuristic (4.2) was used for this test.

6.1.3 Certainty Based Classification

As the results of experiments in this thesis showed, Certainty Based Clas-
sification did not perform well. The main reason for this was that many
documents were certified “uncertain”. In order to make this classification

6.2 Further work 57

“uncertain”

heuristic work, more research has to be done. For example, the
documents could be examined and removed from the train set in order to see
if accuracy grows. Also adaptions to the yes-probability and no-probability

could be sought for, in order to achieve more reliable certainty measures.

6.2 Further work

E-Sl@ve should be adapted to a popular (Java-compliant) email-client such
as Netscape Messenger.

Chapter 6 Conclusion

58

Acknowledgements

I would like to thank the company Edmond R&D that generously offered
me a place for writing this thesis.

Special thanks to:

- Prof. C.H.A Koster and Dr. Paul Jones, who generously assisted me
during this thesis.

- My parents

- Marieke Linders, for her love and support.

Bibliography

1]

[10]

[11]

Apté C., Damerau F. Automatic learning of decision rules for text
categorization. ACM Transactions on Information Systems, 12(3):233
251, january 1994.

Barret R. and Selker T. AIM: A new approach for meeting information
needs. Technical Report, IBM Research, october 1995.

Beney J. The LCS Profiling System User Manual. version 1.2, may
2000.

Blum A., Mitchell T. Combining labeled and unlabeled data with co-
training. In Proceedings of the Eleventh Annual Conference on Com-
putational Learning Theory, pages 92 100.

Cohen W.W. Fast effective rule induction. Machine Learning: Proceed-
ings of the Twelfth International Conference, 1995.

Cohen W.W. Learning Rules that Classify E-mail. In Proceedings of the
1996 AAAI Spring Symposium on Machine Learning and Information
Access, pages 18 25, 1996.

Cohen W.W. Learning with Set-valued Features. In Proceedings of the
Thirteenth National Conference on Artificial Intelligence, 1996.

Dagan I., Karov Y., Roth D. Mistake-driven learning in text catego-
rization. In Proceedings of EMNLP-97, 2nd Conference on Empirical
Methods in Natural Language Processing, 1997.

Helfman J. Isbell C. Ishmail: Immediate Identification of Important
Information. In Proceedings of ECIR 2002, 1995.

Joachims T. Text categorization with Support Vector Machines: learn-
ing with many relevant features. In Proceedings of ECML-98, 10th
European Conference on Machine Learning, version 1.2, may 2000.

Kiritchenko S., Matwin S. Email Classification with Co-Training. oc-
tober 2001.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Koster C.H.A. IR2 dictaat: Full-Text Information Retrieval. march
2002.

Koster C.H.A., Ragas H. Four text classification algorithms compared
on a dutch corpus. In Proceedings of SIGIR-98, 21st ACM International
Conference on Research and Development in Information Retrieval, au-
gustus 1998.

Littlestone N. Learning quickly when irrelevant attributes abound: A
new linear-threshold algorithm. Machine Learning, 2:285 318, 1988.

Maes P. Agents that Reduce Work and Information Overload. Com-
munications of the ACM, 37(7):31-40, july 1994.

Payne T.R., Edwards P. Interface Agents that Learn: An Investiga-
tion of Learning Issues in a Mail Agent Interface. Applied Artificial
Intelligence, 11:1 32, 1997.

Peters C., Koster C.H.A. Uncertainty-based noise reduction and terms-
election in text categorization. ECIR 2002, april 2002.

Provost J. Naive Bayes vs. Rule-Learning in Classification of Email. In
Proceedings of ECIR 2002, 2000.

Rocchio J.J. Relevance feedback in Information Retrieval. The Smart
Retrieval system - experiments in automatic document processing, pages
313-323, 1971.

Ryen et. al. The Use of Implicit Evidence for Relevance Feedback in
Web Retrieval. In Proceedings of ECIR 2002, march 2002.

Sebastiani F. Machine Learning in Automated Text Categoriza-
tion. Technical report IEI-B4-31-1999, Instituto di Elaborazione
dell’Informazione, Consiglio Nazionale delle Ricerche, Pisa, IT, 1999.
Submitted for publication to ACM Computing Surveys., 2000.

Segal R.B. and Kephart J.O. SwiftFile: An intelligent assistant for
organizing email. In AAATI 2000 Spring Symposium on Adaptive User
Interfaces, 2000.

