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Chapter 1Introdu
tionOn-line 
ommuni
ation, in parti
ular email 
ommuni
ation, has an explosivegrowth. Espe
ially large 
ompanies are often 
ooded with thousands ofele
troni
 messages a month. Management of these emails is very important,as this enables a faster pro
essing and easier retrieval of (old) messages.A way of managing emails is to 
lassify every email into a pre-de�ned 
ate-gory (mailfolder), whi
h applies to that email. Performing this 
lassi�
ationtask by hand often is a diÆ
ult and time-
onsuming (thus expensive) job.Therefore an email 
lassi�
ation system, whi
h automati
ally 
lassi�es in-
oming emails, be
omes very useful.An email 
lassi�
ation system has to be far more powerful than the \�lter"fun
tions provided by email pa
kages that �le in
oming messages a

ordingto the sender's name, or a word in the subje
t line, as these often suggestnothing about the message's 
ontent. To e�e
tively 
ategorize email, thesystem would have to analyze the full text of every message. Furthermorethe system must be able to qui
kly adapt to 
hanges in its dynami
 emailenvironment, and the user should not endure additional burdens using thesystem.1.1 Previous workMu
h resear
h has re
ently been vested in theoreti
al 
on
erns surroundingthe problem of text 
lassi�
ation (also known as text 
ategorization). Manypubli
ations are des
ribing issues dealing with this problem. On the otherhand, the problem of automati
 email 
lassi�
ation is rather new to s
ienti�
resear
h, as systems for 
ategorizing emails into di�erent 
lasses are just nowbe
oming available. Most publi
ations des
ribing automati
 email 
lassi�-
ation are dealing with theoreti
al 
on
erns (e.g. 
omparing 
lassi�
ationa

ura
y for di�erent learning algorithms) surrounding the appli
ability of



Chapter 1 Introdu
tion 2text 
lassi�
ation to the problem of automati
 email 
lassi�
ation. Only afew publi
ations deal with pra
ti
al 
on
erns for automati
 email 
lassi�-
ation (e.g. the problem of user-intera
tion in a real-life situation).In [6℄ methods for learning text 
lassi�ers are 
ompared, fo
using on thekinds of 
lassi�
ation problems that might arise in the �ltering and �lingof personal email messages. An extended version of the rule-based learningalgorithm RIPPER is 
ompared with the traditional IR learning algorithmRo

hio ([19℄). The extended RIPPER algorithm seemed to perform beston various email 
orpora, although Ro

hio performed very well also.In [18℄ three experiments are presented, 
omparing a Na��ve Bayesian algo-rithm with bag-valued features against the RIPPER rule learning algorithm([5℄) in di�erent email 
lassi�
ation tasks. In learning a user's foldering pref-eren
es, and learning to dete
t spam, the Bayesian 
lassi�er substantiallyoutperformed RIPPER in 
lassi�
ation a

ura
y. In re
onstru
ting the pol-i
y of an automated, rule-based email 
lassi�er, both systems performedvery well, but the Bayesian 
lassi�er still showed a small but statisti
allysigni�
ant improvement over RIPPER.In [11℄ it was empiri
ally proved that 
o-training [4℄ 
an be applied to email
lassi�
ation. At the same time it was shown that the performan
e of 
o-training depends on the learning method it uses. Namely, Na��ve Bayesperformed very poorly in the experiments while Support Ve
tor Ma
hines([10℄) worked very well. Though, more resear
h is needed to 
larify the
auses of the poor behaviour of Na��ve Bayes in 
ombination with 
o-trainingand explore other possibilities (along with feature sele
tion) to improve theperforman
e of Na��ve Bayes in the 
o-training loop.In [9℄ a 
ustomizable email 
lassi�
ation system, Ishmail, has been des
ribedthat addresses the problem of information overload. Ishmail is unique inthat it not only sorts messages into mailboxes, but it orders mailboxes bya 
ombination of user-spe
i�ed priorities and alarms. In this arti
le, Ish-mail's design is diagramed in terms of its fun
tional 
omponents and theirintera
tions.In [22℄ results are demonstrated of Swift�le, an email assistant that helpsusers organize their (personal) email into folders. Using a text 
lassi�er thatdynami
ally adjusts to the user's mail-�ling habits, Swift�le predi
ts for ea
hin
oming message the three folders that it deems most likely to be 
hoosenby the user as destinations. Swift�le uses a modi�ed version of AIM [2℄ for
lassifying text. AIM is a TF-IDF style text 
lassi�er developed at IBMAlmaden. Results of their experiments showed that in
remental learning(2.3) with this AIM 
lassi�er performs very well in 
lassifying emails.



1.2 Problem statement 31.2 Problem statementThis thesis dis
usses both theoreti
al and pra
ti
al 
on
erns surroundingthe appli
ability of text 
lassi�
ation to the problem of email 
lassi�
ation.Using a prototype, 
alled E-Sl�ve (3.2), the following issues are explored:Theoreti
al issues:� How appli
able is in
remental learning (2.3) for the Balan
ed Winnowalgorithm (2.2), to automati
, 
ontent-based email 
lassi�
ation, andwhat are the di�eren
es with respe
t to bat
hed learning.� Is it possible to extend or modify the Balan
ed Winnow algorithm,su
h that an in
reased 
lassi�
ation a

ura
y with in
remental learn-ing is a
hieved.Pra
ti
al issues:� How to modify E-Sl�ve su
h that, in a real-life situation, the user onlyneeds little e�ort in keeping the system a

urate.1.3 OverviewIn 
hapter 2, the domain of automati
 do
ument 
lassi�
ation is introdu
ed,the working of Balan
ed Winnow is des
ribed, and the di�eren
es betweenbat
hed learning and in
remental learning are explained. In 
hapter 3, theprototype E-Sl�ve is introdu
ed, whi
h provides the 
ore fun
tionality foran email 
lassi�
ation system. Using results of experiments, the a

ura
y ofE-Sl�ve in 
lassifying emails is explored. Next, in 
hapter 4, some (possible)optimalisations to E-Sl�ve are introdu
ed for a
hieving higher 
lassi�
ationa

ura
y. In 
hapter 5, negative relevan
e feedba
k is introdu
ed, whi
h isdes
ribed as a s
enario that enables users in a real-life situation to keep thesystem a

urate with only little e�ort. Finally, in 
hapter 6, several issuesfor future resear
h are mentioned.
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Chapter 2Automati
 Do
umentClassi�
ationIn do
ument 
lassi�
ation, given a text do
ument (e.g. an email) and a 
ol-le
tion of potential 
lasses, an algorithm de
ides whi
h 
lasses the do
umentbelongs to, or how strongly it belongs to ea
h 
lass. More formally it 
anbe des
ribed as follows (see [12℄):Given a set of 
lasses (topi
s) C and examples for ea
h 
lass, 
onstru
ta 
lassi�er for ea
h 
lass whi
h, given a do
ument d, 
omputes therelevan
e of do
ument d for the 
lass.A 
lassi�er for a 
lass 
 is thus a fun
tion whi
h expresses the relevan
e ofdo
uments for 
lass 
.Classi�ers have to be learned. Many di�erent learning algorithms for text
lassi�ers exist, all of them using di�erent te
hniques in learning the 
lassi-�ers. In this thesis the learning algorithm Balan
ed Winnow (2.2) is used.Balan
ed Winnow belongs to the 
lass of supervised learning algorithms.2.1 Supervised learning algorithmsLearning algorithms for do
ument 
lassi�
ation (also known as text 
las-si�
ation/
ategorization) bring together te
hniques from IR (InformationRetrieval) and AI (Arti�
ial Intelligen
e). For an overview of the literaturein this �eld see [21℄. In this thesis only one supervised learning algorithm(Winnow) is explored.Supervised learning algorithms use (labeled) training data to learn 
lassi-�ers whi
h 
lassify new texts. Do
uments in a 
orpus, whi
h 
onsists of a setof \typi
al" pre-
lassi�ed example do
uments for ea
h 
lass, form this train-ing data. Ea
h do
ument in this 
orpus is labeled by one or more 
lasses. A



Chapter 2 Automati
 Do
ument Classi�
ation 6do
ument is 
onsidered as a positive example for all 
lasses with whi
h it islabeled and as a negative example for all 
lasses with whi
h it is not labeled.Three broad 
lasses of supervised learning algorithms 
an be distinguished:1. linear 
lassi�ersLearning algorithms for linear 
lassi�ers 
lassify new do
uments a
-
ording to the s
ore for ea
h 
lass that is obtained by taking an in-produ
t of 
lass pro�le (weighted ve
tor of keywords) and do
umentpro�le (2.1.1). Good examples are Ro

hio ([19℄) and (Balan
ed) Win-now ([14, 8℄).2. rule-based 
lassi�ersLearning algorithms for rule-based 
lassi�ers learn by inferring a setof rules from pre-
lassi�ed do
uments. A good example is the Ripperalgorithm ([5, 7℄).3. example-based 
lassi�ersLearning algorithms for example-based 
lassi�ers 
lassify a new do
-ument by �nding the k nearest to it in the train set and doing someform of majority voting on the 
lasses of these nearest neighbours (see[10℄).In this thesis Balan
ed Winnow (2.2) is used. This algorithm trains linear
lassi�ers.2.1.1 Training linear 
lassi�ersText 
lassi�ers represent a do
ument d by a set of features:F (d) = ff1; f2; � � � ; fmg, where m is the number of unique features in thedo
ument. In this thesis a feature is represented by a single word. Everyfeature f has a strength in any do
ument d, denoted by sd(f). Several waysto 
ompute this strength are found in the Information Retrieval literature:� boolean strength: sd(f) = 1 or 0, indi
ating respe
tively the presen
eor absen
e of feature f in d.� frequen
y strength: sd(f) = n(f; d), re
e
ting the number of times fappears in d.� square root strength: sd(f) = pn(f; d), re
e
ting the square root ofthe number of times f appears in d.In E-Sl�ve (3.2), square root term strengths are used, be
ause in [8℄ it wasexplored that using square root term strengths resulted in the best a

ura
y
ompared to the other methods of 
omputing term strengths.



2.2 Balan
ed Winnow 7A linear (text) 
lassi�er represents a do
ument pro�le for a do
ument d bya ve
tor of its feature strengths: sd = (sd(f1); sd(f2); � � � ; sd(fm)).A 
ategory is represented by a weighted ve
tor of keywords (also 
alled 
lasspro�le): w
 = (w
(f1); w
(f2); � � � ; w
(fn)), where n is the number of featuresin the domain and w
(fi) is the weight of the i-th feature for 
lass 
.The s
ore of do
ument d for 
lass 
, denoted as S
(d), is evaluated by 
om-puting the dot produ
t of weight ve
tor w
 and feature strength ve
tor sd:S
(d) = Xfi2F (d) sd(fi) � w
(fi)The algorithm 
lassi�es a do
ument a

ording to the s
ores it a
hieves forall 
lasses. When the s
ore for a 
lass is above a 
ertain threshold, then thedo
ument is 
lassi�ed as relevant for that 
lass. This makes it possible fora do
ument to be 
lassi�ed in more than one 
lass, whi
h is 
alled multi-
lassi�
ation. In mono-
lassi�
ation the do
ument is assigned to exa
tlyone 
lass.The task of a learning algorithm for linear text 
lassi�ers is to �nd weightve
tors (
lass pro�les) whi
h best 
lassify new do
uments. In the next se
-tion, it is explained how Balan
ed Winnow performs this task.2.2 Balan
ed WinnowBalan
ed Winnow ([8℄) is a variant of Littlestone's Winnow algorithm ([14℄).Winnow (like Support Ve
tor Ma
hines [10℄) 
lassi�es do
uments by learninglinear separators (
lassi�ers) (2.1.1) in the feature spa
e. Winnow is an on-line and mistake-driven learning algorithm. It is on-line in the sen
e thata 
lassi�er X
 for 
lass 
 �rst predi
ts the relevan
e of a do
ument for 
lass
 and then re
ieves feedba
k, 
alled relevan
e feedba
k, on this predi
tion,whi
h may be used to update the 
urrent hypothesis (ve
tor of weights) ofthe 
lassi�er. Be
ause this hypothesis is only updated when the algorithmhas made a wrong predi
tion (and thus made a mistake), Balan
ed Winnowis 
alledmistake-driven. The 
urrent ve
tor of weights represents the 
urrentstate of the 
lassi�er.To learn 
lassi�ers (whi
h may be interpreted as �nding good weight ve
-tors), usually a set of pre-
lassi�ed do
uments from a 
orpus is used as thetraining data. This is 
alled the train set. In a train set ea
h do
ument islabeled by one (mono-
lassi�
ation) or more (multi-
lassi�
ation) 
lasses.A do
ument is 
onsidered as a positive example for all 
lasses with whi
h itis labeled and as a negative example for all 
lasses with whi
h it is not la-beled. The labeling of the do
uments is used to provide \perfe
t" relevan
efeedba
k.



Chapter 2 Automati
 Do
ument Classi�
ation 8Balan
ed Winnow has three parameters: a threshold �, and two updateparameters, a promotion parameter � and a demotion parameter �. Theyare 
hoosen as follows: � = 1� > 10 < � < 1The algorithm maintains two weights for every feature: w+ and w�. Theoverall weight of a feature is the di�eren
e between these two weights, thusallowing for negative weights. We have seen (2.1.1) that a do
ument d isdenoted as a ve
tor of its feature strengths: sd = (sd(f1); sd(f2); � � � ; sd(fm)),where m is the number of unique features in do
ument d and sd(fm) is thestrength of the m-th feature in d. Now, given a do
ument d, a 
lassi�er X
for 
lass 
 predi
ts that this do
ument is relevant for that 
lass if:S
(d) = mXj=1(w+
 (fj)� w�
 (fj)) � sd(fj) > �in whi
h w
(fj) is the weight of the j-th feature in do
ument d for 
lass 
.The initialisation of the weights will be dis
ussed later (3.2.3). For now itis important to know that w+ has an initial value that is 2 times the valueof w�. In 
ase a 
lassi�er X
 makes a wrong predi
tion, weight ve
tor w
will be updated. Only the weights of features in w
 that also o

ur in thedo
ument (the a
tive features) are updated. This happens a

ording to thefollowing update rules:1. Positive exampleIf S
(d) < � ^ d 2 
, then for all a
tive features, w+
 is promoted bymultiplying it with � and w�
 is demoted by multiplying it with �.This results in an in
reasing overall weight (w+ � w�) for all a
tivefeatures, whi
h promotes the positive example d.2. Negative exampleIf S
(d) > � ^ d =2 
, then for all a
tive features, w+
 is demoted bymultiplying it with � and w�
 is promoted by multiplying it with �.This results in a de
reasing overall weight for all a
tive features, whi
hdemotes the negative example.This promoting and demoting of weights ensures that the 
lassi�ers learnfrom their mistakes.



2.3 Bat
hed vs. in
remental learning 92.2.1 Threshold rangeAn extension to this algorithm is the thi
k-threshold heuristi
 (see [8℄). Inthis 
ase the s
ores for positive and negative examples are separated aswidely as possible. The idea is to introdu
e two separate thresholds: �+and ��, su
h that �+ > ��. Now a 
lassi�er X
 for 
lass 
 predi
ts that ado
ument d is relevant for 
lass 
 if S
(d) > �+. A do
ument is predi
tedto be irrelevant if S
(d) < ��. All s
ores within the range [��; �+℄ are
onsidered mistakes.When this heuristi
 is used, a positive example (d 2 
) is promoted whenS
(d) < �+ and a negative example (d =2 
) is demoted if S
(d) > ��. Inthis way the s
ores for all positive examples are widely separated from thes
ores for negative examples. E-Sl�ve uses this heuristi
.2.3 Bat
hed vs. in
remental learningNow that it has been explained how Balan
ed Winnow works, there remainsan important issue unmentioned. This issue 
on
erns the overall 
lassi�
a-tion pro
ess. This 
lassi�
ation pro
ess de�nes the way how 
lassi�ers arebuild, the moments when 
lassi�ers are trained and the moments when these
lassi�ers are used to 
lassify new (unseen) do
uments. We 
onsider twodi�erent approa
hes for this pro
ess: bat
hed learning (as in LCS 1 ([3℄)and in
remental learning (as in E-Sl�ve (3.2)). Note that, while explain-ing these approa
hes, it is assumed that the learning algorithm Balan
edWinnow (2.2) is used.2.3.1 Bat
hed learningThe bat
hed learning approa
h distinguishes a training phase and a produ
-tion phase. The training phase is used to train the 
lassi�ers, while theprodu
tion phase is used to apply the trained 
lassi�ers to 
lassify new(unseen) do
uments. The 
lassi�
ation pro
ess for this approa
h 
onsists ofthe following steps:1. Colle
t statisti
s on the train set.2. Create initial 
lass pro�les.3. Train iteratively on all do
uments of the train set (training phase).4. Classify new do
uments (produ
tion phase).1Linguisti
al Classi�
ation System, developed at the Katholieke Universiteit ofNijmegen (KUN)



Chapter 2 Automati
 Do
ument Classi�
ation 10In this approa
h, training 
an be done iteratively on all the do
uments inthe train set. As Balan
ed Winnow is sensitive to the ordering of trainingdo
uments, after ea
h iteration the do
uments in the train set are shu�edrandomly. Iterating 
an be done for a �xed number of times or until the
lassi�ers do not make any mistakes (2.2) on the train set anymore. Whenthe training phase is �nished, the 
lassi�ers have rea
hed their �nal state.This implies that, during the produ
tion phase, the 
lassi�ers do not 
hange,whi
h means that new do
uments are not used for training.Ea
h step in this pro
ess 
an not be performed until its previous step hasbeen performed. Therefore this (bat
hed learning) approa
h has some re-stri
tions in our situation (that deals with email 
lassi�
ation in a dy-nami
 environment). These restri
tions are:� the required presen
e of a train set, whi
h must be preserved.� the required training of a bat
h of do
uments before the produ
tionphase 
an be started.� 
lassi�ers do not learn (immediately) from new do
uments.� 
lassi�ers have to be learned from s
rat
h, when additional trainingwith new do
uments is desired, adding new plus trained do
uments.2.3.2 In
remental learningThe global pro
ess for in
remental learning 
onsists of two simple steps:1. Colle
t 
lass names.2. Classify new do
uments (produ
tion phase).What we see is that, in 
ontrast with bat
hed learning, in
remental learn-ing does not require the presen
e and preservation of a train set. Initialtraining is not required either. The only information that must be avail-able from start, are the names of potential 
lasses in whi
h new do
uments
an be 
lassi�ed. The algorithm 
an therefore dire
tly start 
lassifying new(unseen) do
uments in the produ
tion phase.In an in
remental learning situation, 
lassi�ers are trained in
rementallyduring the produ
tion phase, never rea
hing a �nal state. This means thatevery new and relevant do
ument that arrives will be used immediately(after obtaining relevan
e feedba
k (5.1)) to update existing 
lassi�ers fromtheir 
urrent state. In this way, 
lassi�ers are trained one single do
umentat a time, after whi
h they are ready to 
lassify new do
uments again. Thisis a big di�eren
e with bat
hed learning, where a whole bat
h of do
uments



2.3 Bat
hed vs. in
remental learning 11is trained iteratively from s
rat
h, before the produ
tion phase 
an evenbe started. Note that training iteratively on a train set is not possible inthe in
remental learning situation (as the train set is not preserved), whi
hmakes another di�eren
e with bat
hed learning.In a real-life situation, several ways to obtain relevan
e feedba
k (whi
h isthe information about a do
ument that indi
ates the 
lass for whi
h thatdo
ument is most relevant, a

ording to an \expert"), are imaginable. In
hapter 5 this issue is explored. For now it is only important to noti
e thatre
ieving feedba
k on the relevan
e of a new do
ument is ne
essary, as non-relevant do
uments do not belong to any of the potential 
lasses and aretherefore useless training examples.In the domain of email 
lassi�
ation, in
remental learning is preferable. Theadvantages are:� the produ
tion phase 
an be started right away (no pre-
lassi�ed do
-uments nor initial training are required).� 
lassi�ers learn immediately from new do
uments, whi
h enables themto adapt to slight 
hanges in the \meaning" of topi
s (
lasses) over time(whi
h is useful within the email domain).� 
lassi�ers are trained one single do
ument at a time (no bat
h), whi
hmakes periods of training very short and ensures that 
lassi�ers areready for 
lassifying new do
uments immediately.
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remental learningThe email environment is very dynami
. Contents of new messages and theuser's mail �ling habits 
onstantly 
hange. For email 
lassi�ers it is impor-tant to adapt to these 
hanges, preferably as soon as possible. Some email
lassi�
ation systems adapt to these 
hanges by retraining from s
rat
h ona daily basis (mostly over night) (see [15℄, [16℄). A potential disadvantage ofthis bat
hed learning (2.3) is that the system may not be suÆ
iently respon-sive to the above mentioned 
hanges. Therefore, a better way of adaptingto 
hanges would be to update existing 
lassi�ers from their 
urrent stateimmediately after a 
ertain event o

urs (whi
h 
an be the arrival of a newemail, the movement of an email from one folder to another, and more..).This is what is 
alled in
remental learning. In paragraph 2.3 in
rementallearning has been des
ribed more thoroughly.3.1 Di�erent situationsIn [22℄ was demonstrated, that in a dynami
 email environment in
rementallearning indeed performs better than periodi
 (bat
hed) learning. However,an important detail is that a di�erent algorithm was used. This algorithm
an in
rementally update 
lassi�ers with a single new do
ument, obtainingthe same state of the 
lassi�ers as it would have obtained by retrainingthe 
lassi�ers from s
rat
h in
luding the new do
ument. The 
onsequen
eof this is, that in a stati
 environment the results of in
remental learningequal the results of bat
hed learning. This does not hold for the Balan
edWinnow algorithm.In a stati
 environment, Balan
ed Winnow should perform better in abat
hed learning situation than in an in
remental learning situation. Thisassumption 
an be made for two reasons:1. in a bat
hed learning situation 
lassi�ers have statisti
s on the whole
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remental learning 14train set, while in an in
remental learning situation 
lassi�ers onlyhave statisti
s upto the 
urrent state of the system, starting with nostatisti
s at all.2. in a bat
hed learning situation 
lassi�ers train iteratively on all do
u-ments in a train set, while in an in
remental learning situation 
lassi-�ers are trained with one single do
ument not having the possibilityof training iteratively on all do
uments in a train set.Espe
ially the se
ond point is assumed to have great impa
t on the results,be
ause training iteratively on all do
uments from a train set ensures that
lassi�ers get to know their 
lass members (and non 
lass members) better.Therefore, in this 
hapter the performan
e of in
remental learning 
omparedto bat
hed learning for the Balan
ed Winnow algorithm is explored.3.2 E-Sl�veFor this thesis, a system 
alled E-Sl�ve was developed, whi
h provides the
ore fun
tionality for an email 
lassi�
ation system. E-Sl�ve is 
oded in theJava programming language. The tools, runtimes and APIs that are used,were all provided by the Java 2 Platform, Standard Edition 1. E-Sl�velearns, a

ording to the in
remental learning approa
h (2.3) applied to theBalan
ed Winnow algorithm (using the thi
k-threshold heuristi
 (2.2.1)).The system is (
urrently) only suitable for mono-
lassi�
ation, where everydo
ument is assigned to exa
tly one 
lass. No linguisti
al te
hniques (e.g.stemming), stoplists or other pre-pro
essing \instruments" are used.3.2.1 Feature extra
tionA text 
lassi�er represents a do
ument by its features strengths. E-Sl�verepresents features as single words, and extra
ts them from a do
umenta

ording to the following 
riteria:� a feature should begin with a letter.� a feature should have a minimum length of two 
hara
ters.Email addresses are 
ut into pie
es. For example the email address 
hris-tiaan�edmond.nl is 
ut into three features (
hristiaan, edmond, nl). Thisprevents that, when a person has multiple email addresses within the samedomain, these addresses are identi�ed as two di�erent features. For exam-ple the same person 
ould also have the email address 
hristiaan.rudolfs�ed-1http://java.sun.
om/j2se/



3.2 E-Sl�ve 15mond.nl. When these email addresses are not 
ut into pie
es, these two ex-ample email addresses would be identi�ed as two di�erent features, while itbelongs to the same person. Whether 
utting email addresses into pie
esin
uen
es the 
lassi�
ation a

ura
y in a positive or negative manner, if itin
uen
es the a

ura
y at all, is not known.3.2.2 Internal pro
essE-Sl�ve follows the in
remental learning approa
h. In 2.3, the pro
ess forthis approa
h has been des
ribed already, but this time more details aregiven.1. Colle
t 
lass names.2. Classify new emails (produ
tion phase).(a) Classify one new email a

ording to the 
urrent state of the 
las-si�ers.(b) Obtain relevan
e feedba
k on the email.(
) Extend all 
lass pro�les (weight ve
tors) with the terms that o
-
ur in the email.(d) In
rementally train all 
lassi�ers with the single email (Balan
edWinnow (2.2)), using it as a positive example for the 
lass forwhi
h it is relevant (a

ording to the re
ieved feedba
k in (b))and as a negative example for all other 
lasses.Formal des
riptionad 1):Obtain potential 
lasses: f
1; 
2; � � � ; 
zg, where z is the number of 
lasses.ad 2(a)):For ea
h 
lass 
i, there exists a 
lassi�er X
i with weight ve
tor w
i . Thisweight ve
tor is initially empty. A new email e arrives, and will be 
lassi�eda

ording to the 
urrent weight ve
tor w
i for all 
lassi�ers X
i .ad 2(b)):Get the 
lass 
x for whi
h email e is relevant (if there is any), a

ording tothe label of e (in an experimental environment) or a

ording to the feedba
kfrom an \expert" user (real-life situation, see also 
hapter (5)).ad 2(
)):Extend ea
h weight ve
tor w
i with all the features (initial weighted) thato

ur in e. In this way, weight ve
tor w
i will 
ontain many negative features,whi
h are the features that do not o

ur in any of the examples for 
lass 
i.
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remental learning 16ad 2(d)):When 
lassi�er X
x makes a mistake a

ording to the thi
k-threshold heuris-ti
 (2.2.1), the a
tive features (2.2) of weight ve
tor w
x are promoted. Forall other 
lassi�ers X
i for whi
h i 6= x it holds that, when they make amistake, the a
tive features in weight ve
tor w
i are demoted.Note that step 2(a) to 2(d) are repeated, every time a new message arrives.3.2.3 Weight initialisationAn important issue is the initialisation of the Winnow weights w+ and w�.As we have seen already (2.2), these weights are used to 
ompute the s
oreof a do
ument d for 
lass 
:S
(d) = mXj=1(w+
 (fj)� w�
 (fj)) � sd(fj)When the weights are initialised signi�
antly too low or too high, moredo
uments have to be trained to a
hieve a 
ertain level of a

ura
y. Theideal initialisation of these weights, in the absen
e of any knowledge of the
orre
t 
lasses of the do
uments, should have the property that it assigns toan average do
ument for every 
lass the s
ore � (whi
h is 1).In our situation (in
remental learning), it is unknown what an average do
-ument is, be
ause there are no statisti
s on the potential 
lasses available.For this reason, the 
hoi
e was made to modify sd(f), the strength of featuref in do
ument d, by using a quantity that is normalized with respe
t to thedo
ument length. Formally, the strength sd(f) is repla
ed by a normalizedstrength: snormd(f) = sd(f)Pi2F (d) sd(i)in whi
h snormd(f) is the normalized strength of feature f in do
ument d,and the other symbols are de�ned as in 2.1.1.This modi�
ation makes it possible to initialise w+ to 2� and w� to �. Theexplanation for this is as follows:The average do
ument strength davg 
an be de�ned as:davg = Xf2F (d) snormd(f) = Xf2F (d) sd(f)Pi2F (d) sd(i) = Pf2F (d) sd(f)Pi2F (d) sd(i) = 1Consequently this leads to S
(d) = � (=1), be
ause for every f 2 F (d) the
oeÆ
i�ent of the Winnow weights is 1, as (w+�w�) = (2�� �) = � = 1. Asthis is the s
ore for a do
ument that we wanted, it is justi�ed to initialisew+ to 2� and w� to �.



3.3 E-Sl�ve vs. LCS 173.2.4 Determining the relevant 
lassThe algorithm 
lassi�es a do
ument a

ording to the s
ores it a
hieves forall 
lasses. When the s
ore for a 
lass is above a 
ertain threshold, then thedo
ument is 
lassi�ed as relevant for that 
lass. Therefore it is possible thata do
ument will be 
lassi�ed in more than one 
lass (multi-
lassi�
ation).Be
ause this thesis deals with mono-
lassi�
ation, a new do
ument shouldbe 
lassi�ed in exa
tly one 
lass. To determine this 
lass, the s
ore S
(d)of do
ument d is 
omputed for every 
lass 
, a

ording to the 
urrent state(weight ve
tor) of the 
lassi�ers, and then d is assigned to the 
lass for whi
hd obtained the highest s
ore.In 4.3 a di�erent method for determining the relevant 
lass is explored.3.3 E-Sl�ve vs. LCSIn this initial test the results of E-Sl�ve are 
ompared with the results ofthe Linguisti
al Classi�
ation System (LCS ([3℄)). The purpose of this testis to 
ompare in
remental learning (as in E-Sl�ve) with bat
hed learning(as in LCS) for the Balan
ed Winnow algorithm (2.2).First the 
orpora used in the experiments are des
ribed. Then some mea-sures are de�ned to determine the su

ess of 
lassi�
ation. Finally the setupand results of experiments are des
ribed.3.3.1 CorporaIn this thesis two 
orpora are used to perform experiments. One 
orpus(Reuters mono subset ) is no email 
orpus, but 
onsists of short newspaperarti
les, whi
h have a good likeness with email messages. Be
ause it is knownthat the do
uments in this 
orpus are very well pre-
lassi�ed, this 
orpusis very useful for running experiments. The other 
orpus (Edmond ) is anemail 
orpus. This 
orpus has been 
reated espe
ially for this thesis, whi
hmeans that no experien
es of running experiments on this 
orpus exist.Reuters mono subset 
orpusThe Reuters mono subset 
orpus 
onsists of a random sele
tion of 9090 pre-
lassi�ed do
uments from the well-known Apte subset of the Reuters 21578
orpus [1℄. The do
uments are short (mono-
lassi�ed) newspaper arti
lesvery unevenly distributed over 66 
lasses. Be
ause we are not interested in
lassifying a huge number of do
uments, a subset of this 
orpus was 
reated.Important 
riteria for the subset are: a reasonable number of 
lasses shouldbe taken, the uneven distribution of do
uments over the 
lasses has to remain
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t, and all 
lasses should 
ontain at least 10 example do
uments. The
orpus is 
alled the Reuters mono subset 
orpus. In table 3.1 the statisti
sfor the Reuters mono subset 
orpus are depi
ted.Number of do
uments 3065Number of 
lasses 15Total number of words in 
orpus 404825Number of unique words in 
orpus 16169Average number of words per do
ument 132Average number of unique words per do
ument 75Smallest number of do
uments in a 
lass 12Largest number of do
uments in a 
lass 701Table 3.1: Statisti
s for the Reuters mono subset 
orpus.Edmond 
orpusThe Edmond 
orpus 
onsists of real emails from two running proje
ts withinthe 
ompany Edmond R&D. The 
lass stru
ture and the 
lassi�
ation of theemails were manually 
onstru
ted. The two proje
ts are merged into a single
orpus to get a larger do
ument set. In table 3.2 the statisti
s for this 
orpusare depi
ted.Number of do
uments 1134Number of 
lasses 18Total number of words in 
orpus 264552Number of unique words in 
orpus 15327Average number of words per do
ument 233Average number of unique words per do
ument 121Smallest number of do
uments in a 
lass 8Largest number of do
uments in a 
lass 130Table 3.2: Statisti
s for the Edmond 
orpus.3.3.2 Measures: Pre
ision, Re
all, A

ura
yIn determining the su

ess of 
lassi�
ation, the measures Pre
ision, Re
alland A

ura
y are used throughout this thesis. These measures are based onseveral quantities that must be tra
ked for every 
lass during the 
lassi�-
ation pro
ess. The quantities are:



3.3 E-Sl�ve vs. LCS 19� RS = Relevant Sele
ted, the number of relevant do
uments, 
lassi-�ed as relevant.� RNS = Relevant Not Sele
ted, the number of relevant do
uments,
lassi�ed as irrelevant.� NRS = Not Relevant Sele
ted, the number of irrelevant do
uments,
lassi�ed as relevant.� NRNS = Not Relevant Not Sele
ted, the number of irrelevant do
-uments, 
lassi�ed as irrelevant.Now we 
an de�ne Pre
ision and Re
all as follows:Pre
ision = RSRS +NRSRe
all = RSRS +RNSTo obtain a single measure for the whole 
orpus, the average Pre
ision orRe
all is used. Two ways of averaging 
an be distinguished:1. Mi
ro averageThe Pre
ision (and Re
all) is 
al
ulated by summing the quantitiesover all 
lasses. This average is dominated by the large 
lasses (thosewith many training do
uments).2. Ma
ro averageThe Pre
ision (and Re
all) is 
al
ulated by summing the Pre
ision(and Re
all) for every 
lass and then dividing it by the number of
lasses. This average is dominated by the small 
lasses.In mono-
lassi�
ation, mi
ro-averaged Pre
ision equalsmi
ro-averagedRe
all. This is explained as follows. When the algorithm 
lassi�es a do
u-ment d in a 
lass 
i, for whi
h it is not relevant (the algorithm has made amistake), then NRS
i is in
reased by one. At the same time, say that d hadto be 
lassi�ed in 
lass 
j , RNS
j is in
reased by one. Consequently, thevalues of NRS and RNS in the above de�nitions of Pre
ision and Re
all areequal (as the quantities of all 
lasses are summed). The ma
ro-averagedPre
ision and Re
all usually are not equal.A good measure to indi
ate the A

ura
y of the algorithm is the F1 -measure.This measure is de�ned su
h that Pre
ision and Re
all are assigned equalimportan
e: F1 = 21Pre
ision + 1Re
all
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remental learning 20Note that this implies for mi
ro-averaging that:F1mi
ro = Pre
isionmi
ro = Re
allmi
roIn the rest of this thesis A

ura
ymi
ro (= F1mi
ro), and A

ura
yma
ro(= F1ma
ro) are used to determine the a

ura
y of 
lassi�
ation results.3.3.3 Experiment: Learning behaviourGlobal setupSeveral tests on both the Reuters mono subset 
orpus and Edmond 
orpuswere performed. For this purpose these 
orpora were split into a train setand a test set. The pre-
lassi�
ations of the do
uments in the 
orpus isused to provide the \perfe
t" relevan
e feedba
k. Do
uments in the trainset are used to train 
lassi�ers, while do
uments in the test set are used todetermine the a

ura
y of the trained 
lassi�ers. For both 
orpora a trainset was 
hoosen su
h that it 
onsists of 75% of the do
uments in the 
orpus.The test set 
onsists of the remaining 25% of the do
uments in the 
orpus.Tests on several di�erent train sets and test sets were performed to get morereliable results.Both 
orpora were partitioned in four parts: p1, p2, p3 and p4, ea
h timetaking one part as the test set and the other three parts as the train set. Inthis way, four separate tests for ea
h 
orpus are a
quired:1. train set = fp1; p2; p3g, test set = fp4g2. train set = fp1; p2; p4g, test set = fp3g3. train set = fp1; p3; p4g, test set = fp2g4. train set = fp2; p3; p4g, test set = fp1gIn ea
h test the algorithm trains on in
reasing parts of the train set (
alledepo
hs), so that the learning behaviour of both systems 
an be 
ompared.The results of all four tests were averaged to determine the �nalA

ura
ymi
roand A

ura
yma
ro (3.3.2).E-Sl�ve spe
i�
 setupBe
ause Balan
ed Winnow is sensitive to the ordering of training do
uments,and E-Sl�ve (in
remental learning) does not train iteratively on a bat
hof do
uments, all four tests were performed 10 times, ea
h time using a



3.3 E-Sl�ve vs. LCS 21randomly shu�ed version of the train set. For all four tests the results wereaveraged.The settings that were used for E-Sl�ve during this experiment are depi
tedin table 3.3. term strengths : sqrt� : 1:1� : 0:9�+ : 1:1�� : 0:9Table 3.3: Test settings for E-Sl�ve.LCS spe
i�
 setupIn 
ontrast with E-Sl�ve, LCS does not need di�erent shu�ed versions ofea
h train set, be
ause the system iteratively trains on all do
uments out ofthe train set, internally shu�ing the train set after ea
h iteration. Be
ausethe results of two runs of the same test may vary (
aused by the sensitivityto the ordering of training do
uments), ea
h test was performed 10 timesand the results were averaged.The settings that were used for LCS during this experiment are depi
ted intable 3.4. term strengths : sqrtnormalize : linearterm sele
tion : o�� : 1:1� : 0:9�+ : 1:1�� : 0:9maxiters : 5Table 3.4: Test settings for LCS.Main di�eren
esNote that the main di�eren
es between E-Sl�ve and LCS are:� LCS performs (max.) 5 iterations on the train set (bat
hed learning),wile E-Sl�ve performs no iterations at all (in
remental learning). A
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remental learning 22situation in whi
h E-Sl�ve performs multiple iterations with one do
-ument (Aggressive-Training) is explored later in this thesis in 4.2.� LCS 
olle
ts statisti
s on the whole train set, while E-Sl�ve only hasstatisti
s upto the number of do
uments that have been pro
essed 
ur-rently, starting with no statisti
s at all. Therefore, LCS starts with
lass pro�les that are initially �lled with all (initially weighted) fea-tures from do
uments in the 
orpus (assuming that no term sele
tion isused), while E-Sl�ve starts with 
lass pro�les that are initially empty,extending them with features while do
uments are pro
essed.3.3.4 Results: Learning behaviourReuters mono subset 
orpusThe A

ura
ymi
ro (3.3.2) is depi
ted for both systems in �gure 3.1. In areal-life situation, this measure is most indi
ative, as it denotes the numberof \real-time" 
orre
tly 
lassi�ed messages. The graph shows us that E-Sl�ve performs well, as it starts a little lower than LCS, but then 
omesba
k and performs roughly equal to LCS.
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Figure 3.1: E-Sl�ve vs. LCS, A

ura
y, Reuters mono subset 
orpus.The A

ura
ymi
ro measure is dominated by the large 
lasses (those withmany training do
uments). In order to get an indi
ation of the 
ontributionto the overall 
lassi�
ation a

ura
y for small and large 
lasses, themi
ro-averaged results have to be 
ompared with the ma
ro-averaged results(as these are dominated by the small 
lasses).The results of this mi
ro/ma
ro 
omparison are depi
ted in �gure 3.2. Thegraph depi
ted in this �gure shows that the A

ura
yma
ro for LCS is ini-tially a lot higher than the A

ura
yma
ro for E-Sl�ve, while for larger num-



3.3 E-Sl�ve vs. LCS 23bers of training examples there is only a small advantage for LCS. Therefore,as themi
ro-averaged results of both systems were roughly equal, it mightbe supposed that on this 
orpus LCS learns small 
lasses (those with fewtraining do
uments) a little better than E-Sl�ve does. To be sure aboutthis, a graph is 
reated that shows the averaged a

ura
y for a 
lass a

ord-ing to its number of training examples. This graph is depi
ted in �gure 3.3.Note that the graph is obtained by 
ounting for all 
lasses, per epo
h, thenumber of training do
uments, averaging the results (F1 -measure (3.3.2))for those 
lasses with an equal number of training do
uments.
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Figure 3.2: E-Sl�ve vs. LCS, mi
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ro 
omparison, Reuters mono sub-set 
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Figure 3.3: E-Sl�ve vs. LCS, 
lass a

ura
y, Reuters mono subset 
orpus.As the graph depi
ted in �gure 3.3 shows, LCS indeed learns small 
lassesbetter than E-Sl�ve does. For 
lasses with more than 20 training examples
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remental learning 24both systems perform roughly equal.Edmond 
orpusFor the Edmond 
orpus, the A

ura
ymi
ro for both systems is depi
ted in�gure 3.4. As the graph depi
ted in this �gure shows, LCS performs roughly5% better at start and ends up with an a

ura
y that is roughly 3% better
ompared to E-Sl�ve.
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Figure 3.4: E-Sl�ve vs. LCS, A

ura
y, Edmond 
orpus.It is obvious that, looking at the A

ura
ymi
ro, LCS performs better thanE-Sl�ve on this 
orpus, while both systems performed roughly equal on theReuters mono subset 
orpus. An explanation for this 
ould be that theEdmond 
orpus 
ontains more \noise" on the pre-
lassi�
ation of its do
-uments 
ompared to the Reuters mono subset 
orpus. This \noise" 
ausesthat Balan
ed Winnow needs more iterations to learn good 
lass pro�les.Be
ause E-Sl�ve does not (yet) perform any iterations (and LCS does), thismight explain why LCS performs better than E-Sl�ve on the Edmond 
or-pus, while both systems perform equal on the Reuters mono subset 
orpus.Note that the overall lower level of a

ura
y a
hieved on this 
orpus (
om-pared to the Reuters mono subset 
orpus) 
an be explained by the fa
t thatthe Edmond 
orpus is roughly three times smaller than the Reuters monosubset 
orpus (whi
h means that there are less training examples).As was done for the Reuters mono subset 
orpus, a mi
ro/ma
ro 
omparisonhas been depi
ted in �gure 3.5. The graph shows that the A

ura
yma
ro forLCS is a lot higher than the A

ura
yma
ro for E-Sl�ve (at start it is evenhigher than the A

ura
ymi
ro for E-Sl�ve). Therefore it might be supposedthat (for this 
orpus) LCS learns small 
lasses a lot better 
ompared to E-Sl�ve. To be sure about this, the graph depi
ted in �gure 3.6 was 
reated
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h denotes the averaged a

ura
y for a 
lass a

ording to its numberof training examples). This graph shows that LCS indeed performs a lotbetter on small 
lasses. Even for larger 
lasses LCS performs signi�
antlybetter.
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Figure 3.5: E-Sl�ve vs. LCS, mi
ro/ma
ro 
omparison, Edmond 
orpus.
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Figure 3.6: E-Sl�ve vs. LCS, 
lass a

ura
y, Edmond 
orpus.Con
lusionThe results of this experiment show that, for small numbers of training ex-amples, LCS performs better than E-Sl�ve. For larger numbers of trainingexamples, both systems performed roughly equal on the Reuters mono sub-set 
orpus, while on the Edmond 
orpus LCS performs roughly 3% to 5%better 
ompared to E-Sl�ve.
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remental learning 26An explanation for the fa
t that LCS performs better than E-Sl�ve on theEdmond 
orpus, while on the Reuters mono subset 
orpus both systemsperform roughly equal, 
ould be that the Edmond 
orpus 
ontains more\noise" on the pre-
lassi�
ation of its do
uments 
ompared to the Reutersmono subset 
orpus. This \noise" 
auses that Balan
ed Winnow needs moreiterations to learn good 
lass pro�les. Be
ause E-Sl�ve does not (yet) per-form any iterations (and LCS does), this might explain why LCS performsbetter than E-Sl�ve on the Edmond 
orpus, while both systems performequal on the Reuters mono subset 
orpus.In 
on
lusion, it may be stated that the \in
remental" Balan
ed Winnowperforms very well.3.3.5 Experiment: Mistake behaviourIn this experiment the sort of 
lassi�
ation errors of both systems are 
om-pared.In the previous experiment (3.3.3) we have seen that (after a reasonable num-ber of training examples) E-Sl�ve (in
remental learning) performs roughlyas well as LCS (bat
hed learning) on the Reuters mono subset 
orpus. Thisimplies that both systems roughly make the same number of mistakes (wrong
lassi�
ations). Interesting to know is: do both systems make the same sortof 
lassi�
ation errors? This experiment explores this issue.Global setupFour tests on the Reuters mono subset 
orpus were performed, using thesame train sets, test sets, and settings for E-Sl�ve and LCS as in 3.3.3.This time, training on in
reasing parts of the train set was not done, as weare not interested in the learning behaviour.For ea
h of the four tests, the \Top 6" of best 
lasses for both systems weredetermined. For this purpose, every test was performed 10 times, ea
h timeusing a randomly shu�ed version of the train set. The \Top 6" 
onsistsof those 
lasses that have the lowest average lo
al ErrorRate. The lo
alErrorRate for a 
lass 
 is de�ned as:ErrorRate
 = RNS
 +NRS
Nwith N = RS +RNS +NRS +NRNS (see 3.3.2).For all 
lasses the 10 lo
al ErrorRates are summed and averaged. The 
lasseswith the lowest average lo
al ErrorRate form the \Top 6".



3.3 E-Sl�ve vs. LCS 273.3.6 Results: Mistake behaviourThe results were satisfying, as both systems appeared to have an equal \Top6" in all four tests. For one test, the results are depi
ted in table 3.5.Top 6 avg. ErrorRate LCS avg. ErrorRate E-Sl�veCo
oa 0.10 0.07Co�ee 0.00 0.00Gold 0.20 0.07Iron-steel 0.07 0.13Nat-gas 0.00 0.10Sugar 0.00 0.00Table 3.5: Top 6 
lasses for E-Sl�ve and LCS.3.3.7 Performan
eTo provide an indi
ation of the performan
e of E-Sl�ve (in training andtesting do
uments), a small test on the Edmond 
orpus was performed forLCS and E-Sl�ve. The same test was performed 10 times, after whi
h theresults were averaged. The settings for both systems were the same as in3.3.3.The statisti
s of this test are depi
ted in table 3.6:train set : 850 do
uments (1518 KByte)test set : 284 do
uments (519 KByte)total feature spa
e : 14379 (unique) featuresnumber of 
lasses : 18Table 3.6: Statisti
s of speed performan
e test.E-Sl�ve resultsThe performan
e of E-Sl�ve is:Training time: 6.93 se
Testing time: 1.67 se
Note that �rst all do
uments were 
a
hed. Ca
hing all do
uments (2037KByte) took roughly 11:70 se
onds.In 
on
lusion, as an average do
ument's size in this 
orpus is roughly 1:8KBytes, E-Sl�ve needs 0:0082 se
onds to train a message, and needs 0:0058se
onds to test a message.



Chapter 3 In
remental learning 28LCSThe performan
e of LCS is:Training time: 2.68 se
Testing time: 0.95 se
Ca
hing all do
uments (2037 KByte) took roughly 3:51 se
onds.In 
on
lusion, as an average do
ument's size in this 
orpus is roughly 1:8KBytes, LCS needs 0:0032 se
onds to train a message, and needs 0:0033se
onds to test a message.The results show that the performan
e of LCS is better 
ompared to E-Sl�ve. Note that LCS is implemented in C++ (exe
utive 
ode), while E-Sl�ve is implemented in Java (interpreted 
ode).3.4 Con
lusionThe results of experiments in this 
hapter showed that the overall perfor-man
e of in
remental learning applied to Balan
ed Winnow is good. Forsmall numbers of training examples E-Sl�ve (in
remental learning) did notperform as well as LCS (bat
hed learning), but for larger numbers of train-ing examples it performed roughly equal to LCS, provide that the 
orpus
ontains little \noise".The last experiment (3.3.5) showed that the global 
lassi�
ation errors madeby both systems do not di�er, as the \Top 6" of best 
lasses were equal forboth systems.A

ording to these results we might 
on
lude that in
remental learning forBalan
ed Winnow 
an be really promising in automati
 email 
lassi�
ation.In the next 
hapter, an even higher 
lassi�
ation a

ura
y with E-Sl�ve issought for, by exploring some (possible) optimalisations.



Chapter 4OptimalisationsIn the previous 
hapter it was shown that the overall 
lassi�
ation a

ura
yof E-Sl�ve is good. In this 
hapter some (possible) improvements to E-Sl�veare explored, in order to a
hieve an even higher a

ura
y. Respe
tivelyTurbo-Training, Aggressive-Training and Certainty Based Classi�
ation areintrodu
ed.4.1 Turbo-TrainingIn a bat
hed learning situation (2.3), Balan
ed Winnow 
an perform mul-tiple iterations on all do
uments in a train set. In an in
remental learningsituation this is not possible, be
ause ea
h time a new do
ument arrives,the 
lassi�ers are trained with this one (new) do
ument. Therefore, in thein
remental learning situation it is even more important than in the bat
hedlearning situation to get the maximum amount of information out of ea
hdo
ument. To a
hieve this, a new heuristi
 is introdu
ed, whi
h is 
alledTurbo-Training.4.1.1 What is Turbo-TrainingWith Turbo-Training Balan
edWinnow (whi
h ismistake-driven (2.2)) shouldlearn more from ea
h mistake. This may be a
hieved by speeding up thepromotion and demotion of the weights of a
tive terms, a

ording to thes
ore of the do
ument. Therefore the update rules (2.2.1) are 
hanged asfollows:Positive exampleIn 
ase do
ument d is labeled positive for a 
lass 
 (d 2 
), the a
tive termsin 
lass 
 are promoted 1, 2 or 3 times a

ording to the s
ore S
(d):
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(d) < �� ! promote(3)S
(d) < �(= 1) ! promote(2)S
(d) � �+ ! promote(1) ( = thi
k-threshold heuristi
 (2.2.1))in whi
h the fun
tion promote is de�ned as follows:promote(turbofa
tor) : w+ := w+ � �turbofa
tor ;w� := w� � �turbofa
tor ;Negative exampleIn 
ase do
ument d is labeled negative for a 
lass 
 (d =2 
), the a
tive termsin 
lass 
 are demoted 1, 2 or 3 times a

ording to the s
ore S
(d):S
(d) > �+ ! demote(3)S
(d) > �(= 1) ! demote(2)S
(d) � �� ! demote(1) ( = thi
k-threshold heuristi
 (2.2.1))in whi
h the fun
tion demote is de�ned as follows:demote(turbofa
tor) : w+ := w+ � �turbofa
tor ;w� := w� � �turbofa
tor ;Note that this heuristi
 is an alternative to iterative training that 
onservesin
rementality.4.1.2 ExperimentIn this experiment, the results of Turbo-Training are 
ompared with the(previously obtained (3.3.3)) results of normal training.The global setup, and settings for both systems, is 
hoosen the same as in3.3.3. Note that the same order of the training do
uments in the di�erentshu�ed versions of the train set was used, in order to obtain reliable results.4.1.3 ResultsReuters mono subset 
orpusIn �gures 4.1 and 4.2, the results of this experiment for the Reuters monosubset 
orpus are depi
ted. Examining the learning 
urve of the graphdepi
ted in �gure 4.1, it 
an be seen that Turbo-Training speeds up theinitial learning pro
ess extremely. The graph depi
ted in �gure 4.2 providesan even better view, as it 
an be seen that Turbo-Training in
reases thea

ura
y for a 
lass with very few training examples with roughly 10% to20% (on a test set 
onsisting of 767 do
uments). When a 
lass 
ontainsmore than 20 training examples, the results of Turbo-Training and normaltraining are roughly equal.
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Figure 4.1: Turbo-Training, Reuters mono subset 
orpus.

 0

 20

 40

 60

 80

 100

 0  10  20  30  40  50  60

A
cc

ur
ac

y

Number of training documents in a class

Reuters mono subset corpus

Turbo-Training
Normal Training

Figure 4.2: Turbo-Training, 
lass a

ura
y, Reuters mono subset 
orpus.



Chapter 4 Optimalisations 32Edmond 
orpusThe results for the Edmond 
orpus are depi
ted in �gures 4.3 and 4.4. Be-
ause this 
orpus 
ontains far less training examples 
ompared to the Reutersmono subset 
orpus, Turbo-Training speeds up the learning pro
ess for thewhole range of numbers of training do
uments (whi
h a
tually 
an be seenas the initial range). The graph depi
ted in �gure 4.4 provides a better view,as it shows that Turbo-Training in
reases the a

ura
y for 
lasses 
ontaininga maximum of 17 training examples. When a 
lass 
ontains more than 17training examples, the results of Turbo-Training are roughly equal to theresults of normal training.
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Figure 4.3: Turbo-Training, Edmond 
orpus.
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lusionThe 
on
lusion for this experiment is very simple: Turbo-Training is a per-fe
t alternative to iterative training, whi
h 
onserves in
rementality, as itspeeds up the initial learning pro
ess by learning 
lasses with small numbersof training examples better.4.2 Aggressive-TrainingIn an in
remental learning situation it is not possible to train iterativelyon all do
uments in a train set. But it is possible to train iteratively withone do
ument. This is exa
tly what Aggressive-Training does. Ea
h emailthat arrives will be trained iteratively until it does not 
auses a mistakeanymore. This means that a negative example for a 
lass 
 will be trainediteratively until it obtains a s
ore for 
lass 
 that is below 0:9 (= ��). Onthe other hand, a positive example for a 
lass 
 will be trained iterativelyuntil it obtains a s
ore for 
lass 
 that is above 1:1 (= �+).4.2.1 ExperimentIn this experiment, the results of Aggressive-Training are 
ompared withthe (previously obtained (3.3.3)) results of normal training.The global setup, and settings for both systems, are equal to those in theprevious experiment (4.1.2).4.2.2 ResultsReuters mono subset 
orpusThe results for the Reuters mono subset 
orpus are depi
ted in �gures 4.5and 4.6. Examining the learning 
urve of the graph depi
ted in �gure 4.5, it
an be seen that Aggressive-Training speeds up the initial learning pro
ess alittle. The graph depi
ted in �gure 4.6 
on�rms this, as Aggressive-Trainingin
reases the a

ura
y for 
lasses with few training examples. For 
lassesthat 
onsist of more than 20 training examples, the results of Aggressive-Training roughly equal the results of normal training.
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4.2 Aggressive-Training 35Edmond 
orpusThe results for the Edmond 
orpus are depi
ted in �gures 4.7 and 4.8. Forthis 
orpus also, a slight speedup in the learning pro
ess 
an be a
hieved.
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Figure 4.7: Aggressive-Training, Edmond 
orpus.
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Figure 4.8: Aggressive-Training, Edmond 
orpus.Con
lusionIn 
on
lusion, it 
an be stated that Aggressive-Training speeds up the initiallearning pro
ess a little, as it learns 
lasses with small numbers of train-ing examples better. Although Aggressive-Training does not speed up thelearning pro
ess as mu
h as Turbo-Training does, the Aggressive-Trainingheuristi
 
an be very useful, as it enables the system to de-train and re-train
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lasses (see 5.2.1). In 
hapter 5, the Aggressive-Training heuristi
 is used inrealising a s
enario (negative relevan
e feedba
k) for a real-life situation.4.3 Certainty-based 
lassi�
ationThis thesis deals withmono-
lassi�
ation. This means that a new do
umentmust be 
lassi�ed in exa
tly one 
lass. One way of determining this 
lass,is to 
ompute the s
ore S
(d) of do
ument d for every 
lass 
, a

ording tothe 
urrent state (weight ve
tor) of the 
lassi�ers, and then assign d to the
lass for whi
h d obtained the highest s
ore. This is how most appli
ationswork.However, it is possible that the 
omparison of the s
ores for these 
lassesis not su
h a good measure in determining the relevant 
lass for a newdo
ument. This 
an be explained by the fa
t that a highest s
ore might bevery low for the relevant 
lass a

ording to the s
ores history of previouslypro
essed do
uments for that 
lass, while a less higher s
ore might be veryhigh a

ording to the s
ores history of previously pro
essed do
uments forother 
lasses.Therefore a di�erent method in determining the relevant 
lass for a newdo
ument is explored. This method uses statisti
s on the s
ores of previouslypro
essed do
uments in determining the destination 
lass for a do
ument.S
ores of positive do
uments for a 
lass 
 (S
Pos
) and s
ores of negativedo
uments for a 
lass 
 (S
Neg
) are distinguished:S
Pos
 = fs1; s2; � � � ; sngS
Neg
 = fs1; s2; � � � ; smgwith n the number of s
ores of previously pro
essed positive do
uments andm the number of s
ores of previously pro
essed negative do
uments.Now, when a new do
ument d arrives, for ea
h 
lass 
 the yes-probabilityand the no-probability is 
omputed. The yes-probability indi
ates the prob-ability of d being relevant for 
lass 
 and the no-probability indi
ates theprobability of d being irrelevant for 
lass 
. These probabilities are de�nedas follows: Y esProb
(d) = RS
(S
(d))RS
(S
(d)) +NRS
(S
(d))NoProb
(d) = RS
(S
(d))RS
(S
(d)) +RNS
(S
(d))in whi
h S
(d) is the s
ore of do
ument d for 
lass 
, and RS, RNS andNRS have the same meaning as in 3.3.2 and are de�ned as follows:
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lassi�
ation 37RS
(
) = jS
Pos
[s > 
℄jRNS
(
) = jS
Pos
[s � 
℄jNRS
(
) = jS
Neg
[s > 
℄jin whi
h 
 is a threshold.Finally, for ea
h 
lass 
 a 
ertainty measure is obtained, whi
h indi
ates how
ertain it is that do
ument d is relevant or irrelevant for 
lass 
:Cert
(d) = jY esProb
(d) �NoProb
(d)jThree di�erent 
ases have to be distinguished, in order to 
larify the inter-pretation for Cert
(d):1. If Y esProb
(d) = NoProb
(d) then the 
lassi�er for 
lass 
 does notknow whether d is relevant or irrelevant for 
lass 
, as Cert
(d) = 02. If Y esProb
(d) > NoProb
(d) then the 
lassi�er for 
lass 
 predi
tsthat d is relevant for 
lass 
 with a 
ertainty of Cert
(d).3. If Y esProb
(d) < NoProb
(d) then the 
lassi�er for 
lass 
 predi
tsthat d is irrelevant for 
lass 
 with a 
ertainty of Cert
(d).A new do
ument d is assigned to a 
lass a

ording to the following assigningrules:� If there are x 
lasses (x � 1) for whi
h Y esProb
(d) � NoProb
(d)holds, then do
ument d is assigned to one of those x 
lasses for whi
hCert
(d) is highest.� When the situation is su
h that for all 
lassesNoProb
(d) > Y esProb
(d)then the algorithm a
tually tells us that do
ument d is irrelevant forall 
lasses. When this happens, d is assigned to the 
lass for whi
hCert
(d) is lowest, as in that 
ase the algorithm is least sure about his\no-answer".4.3.1 ExperimentIn this experiment, the results of Certainty Based Classi�
ation are 
om-pared with the (previously obtained (3.3.3)) results of normal training.The global setup, and settings for both systems, are equal to those in theprevious experiments (4.1.2, 4.2.1).



Chapter 4 Optimalisations 384.3.2 ResultsThe results of this experiment are depi
ted in �gures 4.9 and 4.10, respe
-tively for the Reuters mono subset 
orpus and Edmond 
orpus.
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Figure 4.9: Certainty Based Classi�
ation, Reuters mono subset 
orpus.

 40

 50

 60

 70

 80

 90

 100

 0  100  200  300  400  500  600  700  800  900

A
cc

ur
ac

y

Number of documents trained

Edmond corpus

Normal Classification (micro)
Certainty Based Classification (micro)

Figure 4.10: Certainty Based Classi�
ation, Edmond 
orpus.A

ording to the results depi
ted in both graphs, it is obvious that this wayof determining the relevant 
lass for a new do
ument performs worse thanthe \standard" method (where a do
ument is 
lassi�ed in the 
lass for whi
hit obtained the highest s
ore, as des
ribed in 3.2.4).Sear
hing for a 
ause, it was found that for many of the do
uments thealgorithm has no \
ertain" answer, be
ause NoProb
(d) > Y esProb
(d) forall 
lasses 
i. So, for these do
uments, the algorithm a
tually answers: \I donot know where to 
lassify this do
ument!". The graph depi
ted in �gure



4.4 Con
lusion 394.11 shows the per
entage of do
uments in the test set for whi
h E-Sl�vedid not know where to 
lassify them. It 
an be seen that for small numbersof training examples the per
entage of \un
ertain" 
erti�ed do
uments ishigher than for large numbers of training examples. This 
ould be explainedby the fa
t that the s
ores history of 
lasses is less \
ertain" when fewdo
uments are trained.
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Figure 4.11: Certainty Based Classi�
ation, \un
ertain" do
s.In 
on
lusion, Certainty Based Classi�
ation de
reases the a

ura
y, parti
-ularly in the initial phase. Therefore, future resear
h on this issue might beuseful.4.4 Con
lusionSeveral extensions and modi�
ations to E-Sl�ve were introdu
ed. The re-sults were quite satisfying. Turbo-Training is a perfe
t alternative to iter-ative training, whi
h 
onserves in
rementality, as it speeds up the initiallearning pro
ess by learning small 
lasses better. Aggressive-Training re-sulted also in a speedup of the learning pro
ess, but it does not outperformTurbo-Training. Nevertheless, the Aggressive-Training heuristi
 is very use-ful, as shall be demonstrated in 
hapter 5. Certainty based 
lassi�
ationdid not perform well, as for many do
uments the system a
tually did notknow where to 
lassify them, but it might be an interesting issue for futureresear
h.
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Chapter 5Negative relevan
e feedba
kRelevan
e feedba
k is the information about a do
ument that indi
ates the
lass for whi
h that do
ument is relevant, a

ording to the opinion of an\expert". The system needs this feedba
k in order to be able to (in
re-mentally) train with the do
ument. In an experimental environment, thepre-
lassi�
ation of do
uments in the 
orpus 
an be used as \perfe
t" rele-van
e feedba
k (as was done in all our previous experiments). In a real-lifesituation, this is impossible, and therefore relevan
e feedba
k must be ob-tained from the user. A diÆ
ult point is then to obtain this information su
hthat the user will not �nd it annoying. In this 
hapter, negative relevan
efeedba
k is introdu
ed, whi
h solves this problem elegantly.5.1 Obtaining relevan
e feedba
kIn a real-life situation, when a new email arrives, the global pro
ess forE-Sl�ve should be as follows:1. Classify the new email a

ording to the 
urrent state of the 
lassi�ers,and �le this email automati
ally in the mailfolder that seems to bemost relevant a

ording to this 
lassi�
ation.2. Obtain relevan
e feedba
k on the email.3. In
rementally train all 
lassi�ers with the single email, a

ording tothe relevan
e feedba
k that was obtained in the previous step.The bottlene
k in this pro
ess is the se
ond step. In this step the systema
tually needs to know whether the email was 
lassi�ed (and thus �led)
orre
tly. In 
ase it was not �led 
orre
tly, the system needs to know intowhi
h mailfolder it should have been �led. The user has to provide this
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e feedba
k 42information (relevan
e feedba
k) to the system, be
ause the in
oming emailsare (usually) not labeled...Two situations 
an be distinguished after a new email has been 
lassi�ed.A \positive" situation and a \negative" situation:1. Positive situationthe email has been 
lassi�ed (and thus �led) 
orre
tly.2. Negative situationthe email has been 
lassi�ed (and thus �led) in
orre
tly.In both situations, the system needs relevan
e feedba
k (for in
rementallearning purposes). The most simple form of obtaining relevan
e feedba
k,is to prompt the user every time a new email has been �led, and ask himexpli
itly for relevan
e feedba
k (whi
h has been simulated in all our previousexperiments). This means that, in 
ase the email has been �led 
orre
tly,the user has to 
on�rm this, otherwise the user has to indi
ate into whi
hmailfolder the email should have been �led. It is 
lear that this expli
it formof obtaining relevan
e feedba
k imposes an in
reased burden and in
reased
ognitive load, as was explored in [20℄.The system that has been des
ribed in [22℄ (Swift�le) uses a more subtlemethod. It provides three short
ut buttons above ea
h message, whi
h rep-resent the \top 3" 
lasses for whi
h the email seems relevant a

ording to thesystem. The short
ut buttons 
an be used to move a message qui
kly to thespe
i�
 mailfolder (
lass). Important to noti
e is that Swift�le does not �lemessages automati
ally, but that it only provides short
ut buttons, whi
henables the user to �le the message. Impli
itly this means that, for everymessage, the user still has to tell the system for whi
h 
lass (mailfolder) themessage is most relevant (by 
li
king on a short
ut button).5.2 Negative relevan
e feedba
kE-Sl�ve �les messages automati
ally. Messages that are �led into the wrongmailfolder, will be dete
ted by the user after some time. It is reasonable toassume that the user will move this message to the 
orre
t mailfolder. Thismovement should be dete
ted by the system, be
ause it provides relevan
efeedba
k on the 
lassi�
ation of the email. A
tually the user tells the system:\Hey, this email should not be �led here, it should be �led there!". Be
ausethis (impli
it) feedba
k is provided only in a \negative" situation (in whi
hthe system has �led a message into the wrong mailfolder), it is 
alled negativerelevan
e feedba
k.In this 
hapter, it is explored whether an a

eptable level of a

ura
y 
anbe a
hieved with E-Sl�ve in a real-life situation, when the user only has
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e feedba
k 43to provide negative relevan
e feedba
k. If this is possible, this would implythat the user only needs little e�ort in keeping the system \a

urate", as heonly has to move mis
lassi�ed emails to the 
orre
t mailfolder (whi
h shouldo

ur rarely, after an a

eptable level of a

ura
y is a
hieved).The only problem with this s
enario is, that in this way E-Sl�ve does notre
ieve relevan
e feedba
k in a \positive" situation, as 
orre
tly �led mes-sages will never be moved to another mailfolder. Fortunately, this 
an besolved by slightly modifying the learning pro
ess for E-Sl�ve.5.2.1 In
remental learning pro
essE-Sl�ve needs relevan
e feedba
k immediately after a new message has been�led (see the pro
ess in 5.1). As was mentioned before, it is no good option tolet the user provide this information for every message. Therefore, E-Sl�veprovides its own relevan
e feedba
k. This is realised by assuming (blindly)that E-Sl�ve always 
lassi�es a (new) message initially 
orre
tly, using the
lassi�
ation results as the relevan
e feedba
k. More formally, the pro
ess isas follows:1. Classify message d into 
lass (mailfolder) 
x, whi
h is the 
lass forwhi
h d seems to be relevant a

ording to the 
urrent weight ve
torw
i for all 
lassi�ers X
i .2. Obtain relevan
e feedba
k : assume (blindly) that 
lass 
x (step 1) isthe 
lass for whi
h d is relevant.3. In
rementally train all 
lassi�ers X
i with message d, using it as apositive example for 
lass 
x and as a negative example for all other
lasses 
i, for whi
h i 6= x.This pro
ess ensures that E-Sl�ve obtains relevan
e feedba
k immediatelyafter a new message has been 
lassi�ed, without the need for any intera
tionwith the user, whi
h enables the system to train immediately with this mes-sage. For messages that are 
lassi�ed initially into the 
orre
t 
lass (step 1),this works �ne. Only a problem o

urs, when a message is 
lassi�ed into thewrong 
lass (step 1), be
ause then the system obtains the wrong relevan
efeedba
k (step 2), and therefore trains with this message (step 3), using itas a positive example for the wrong 
lass and as a negative example forthe 
orre
t 
lass (and all other 
lasses). Fortunately, this \damage" 
an berepared when the user dete
ts the message was �led into the wrong mail-folder, and moves the message to the 
orre
t mailfolder (providing negativerelevan
e feedba
k).Say that the user moves an email message d from 
lass (mailfolder) 
x to
lass 
y. This means that, a

ording to the user, E-Sl�ve initially made a
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k 44mistake in 
lassifying message d. Consequently, 
lass 
x has been trainedpositive with an irrelevant example, and 
lass 
y has been trained negativewith a relevant example. Therefore E-Sl�ve has to de-train 
lass 
x formessage d and has to re-train 
lass 
y for message d. This is realised asfollows:1. De-trainMessage d is trained as a negative example for 
lass 
x (a

ording tothe thi
k-threshold heuristi
 (2.2.1)). This is done iteratively, until thes
ore S
x(d) rea
hes a value below ��. In other words: message d isdemoted for 
lass 
x until it provides a s
ore below ��.2. Re-trainMessage d is trained as a positive example for 
lass 
y (a

ording tothe thi
k-threshold heursti
 (2.2.1)). This is done iteratively, until thes
ore S
y(d) rea
hes a value above �+. In other words: message d ispromoted for 
lass 
y, until it provides a s
ore above �+.Note that all other 
lasses 
i, for whi
h i 6= y, are also trained with messaged, using it as a negative example for these 
lasses. However, in most 
asesthis should not be ne
essary, be
ause the s
ore of message d for all those
lasses should be below �� already, as d was never trained as a positiveexample for those 
lasses.5.3 Non-delayed negative relevan
e feedba
kIn the best 
ase in a real-life situation, negative relevan
e feedba
k is providedimmediately. This means that the user dete
ts and moves a mis
lassi�edmessage immediately, even before the arrival of a new message. This may notbe very realisti
, but it provides a �rst indi
ation of how negative relevan
efeedba
k performs.5.3.1 ExperimentIn this experiment, the results of non-delayed negative relevan
e feedba
kare 
ompared with the (previously obtained) results of Aggressive-Training(see 4.2).The experiment was performed on both the Reuters mono subset 
orpus andEdmond 
orpus, using the labeling of do
uments as the \perfe
t" relevan
efeedba
k. The global setup (train sets, test sets and parameter settings forE-Sl�ve) is the same as in 3.3.3. To obtain reliable results, the same orderof training do
uments in the di�erent shu�ed versions of the train set wasused.
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e feedba
k 45Simulation setupTo simulate the situation of non-delayed negative relevan
e feedba
k, thelearning pro
ess for E-Sl�ve was as follows:1. Classify message d into 
lass 
x, whi
h is the 
lass for whi
h d seemsto be relevant a

ording to the 
urrent state of all 
lassi�ers X
i .2. In
rementally train all 
lassi�ers, using d as a positive example for 
lass
x and as a negative example for all other 
lasses. (Assume blindlythat the results in step 1 are 
orre
t.)3. Obtain relevan
e feedba
k (by 
he
king the label of message d), whi
hprovides the information: d is relevant for 
lass 
y.4. if 
x 6= 
y then: de-train 
lass 
x for message d and re-train 
lass
y for message d.The results of Aggressive-Training (4.2.2) were obtained in a situation whi
hsimulates that the user provides relevan
e feedba
k expli
itly (as was the
ase for all our previous experiments). The learning pro
ess for E-Sl�ve wasas follows:1. Classify message d into 
lass 
x, whi
h is the 
lass for whi
h d seemsto be relevant a

ording to the 
urrent state of all 
lassi�ers X
i .2. Obtain relevan
e feedba
k (by 
he
king the label of message d), whi
hprovides the information: d is relevant for 
lass 
y.3. In
rementally train all 
lassi�ers, using d as a positive example for
lass 
y and as a negative example for all other 
lasses.Note that in both simulations, an email is trained iteratively until it doesnot 
ause a mistake anymore (whi
h is 
alled Aggressive-Training...). Thismeans that a positive example for a 
lass 
 will be trained iteratively until itobtains a s
ore for 
lass 
 that is above �+. A negative example for a 
lass
 will be trained iteratively until it obtains a s
ore for 
lass 
 that is below��.5.3.2 ResultsThe results of this experiment are depi
ted in �gures 5.1 and 5.2, respe
-tively for the Reuters mono subset 
orpus and Edmond 
orpus. The resultsshow that negative relevan
e feedba
k performs roughly equal to Aggressive-Training, and at some points it performs even better. This is striking,be
ause the opposite was assumed.
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e feedba
k 47In a real-life situation it is not likely that a mis
lassi�ed message will bedete
ted and moved immediately after it has been �led. For this reason, itis too early to 
on
lude that the negative relevan
e feedba
k s
enario works�ne in a real-life situation. The only 
on
lusion for now is, that de-trainingand re-training of 
lasses, work extremely well.5.4 Delayed negative relevan
e feedba
kIn a real-life situation, it is not reasonable to assume that the user will pro-vide negative relevan
e feedba
k immediately. Usually there will be a delaybetween the moment the system �les a message d (into the wrong mailfolder),and the moment the user moves message d into the 
orre
t mailfolder. Thisdelay 
ould e�e
t the A

ura
y of the system, as in the meanwhile newmessages arrive that 
an be �led (and thus trained) in
orre
tly due to the
urrently (and temporarily) \instable" state of the 
lassi�ers. For this pur-pose, an experiment was performed to see whether the delayed negativerelevan
e feedba
k s
enario de
reases the A

ura
y.5.4.1 ExperimentIn this experiment, the results of delayed negative relevan
e feedba
k are
ompared with the (previously obtained) results of non-delayed negativerelevan
e feedba
k (see 5.3.1).The global setup (all settings, train sets and test sets) for this experimentis equal to the global setup for the previous experiment.Simulation setupTo simulate the situation of delayed negative relevan
e feedba
k, ea
h mes-sage d that has been mis
lassi�ed is assigned a \delay-value", denoted as Æd.This delay-value is randomly 
hoosen in the range [Æ�; Æ+℄, with (Æ� � Æ+,Æ� � 0). If Æd = 0, it is assumed that negative relevan
e feedba
k on d isprovided immediately, else it is assumed that it takes Æd more messages tobe pro
essed �rst, before negative relevan
e feedba
k is provided on d.To des
ribe the simulation more formally, a train set T = fd1; � � � ; dng, isde�ned (n denoting the number of messages in the train set) and a fun
-tion T ime(di) whi
h determines the number of messages that have beenpro
essed sin
e message di was pro
essed.The pro
ess is as follows:
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e feedba
k 481. Classify message di into 
lass 
x, whi
h is the 
lass for whi
h di seemsto be relevant a

ording to the 
urrent state of all 
lassi�ers X
z .2. In
rementally train all 
lassi�ers, using di as a positive example for
lass 
x and as a negative example for all other 
lasses.3. Obtain relevan
e feedba
k (by 
he
king the label of message di), whi
hprovides the information: di is relevant for 
lass 
y.4. if 
x 6= 
y then: randomly assign a delay-value Ædi to di.(with Æ� � Ædi � Æ+).5. for all messages dj that were assigned a delay Ædj doif T ime(dj) � Ædj then: use message dj for de-training and re-training of 
lasses.Note that when range [d�; d+℄ is 
hoosen as [0; 0℄, the situation of non-delayed negative relevan
e feedba
k is obtained. Note also that there neverneed to be more than d+ messages queued (whi
h are messages d for whi
hT ime(d) < Æd holds).In this experiment, several tests were performed, using the following ranges:[d�; d+℄ = [0; 0℄ (equals non-delayed negative relevan
e feedba
k)[d�; d+℄ = [0; 10℄[d�; d+℄ = [0; 20℄[d�; d+℄ = [0; 50℄5.4.2 ResultsThe results of this experiment are depi
ted in �gures 5.3 and 5.4. It 
anbe seen that a wider delay range 
auses a more de
reased a

ura
y of thesystem, parti
ularly for small numbers of training do
uments. For largenumbers of training do
uments (> 800), the results seem to 
onverge.From the results of this experiment we may 
onl
ude that it indeed is pos-sible to obtain a very a

eptable level of a

ura
y with E-Sl�ve when theuser only has to provide negative relevan
e feedba
k, provide that negativerelevan
e feedba
k is given on all messages that have been mis
lassi�ed.5.4.3 LazynessIn real life, it 
ould happen that some mis
lassi�ed messages are never movedto the 
orre
t mailfolder. When this happens, most of the times, it is 
ausedby the \lazyness" of users. Consequently, the system will be a little \
on-fused", as it is a
tually trained with in
orre
t information (whi
h is never
orre
ted). To explore the e�e
t of this 
onfusion on the a

ura
y of the
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e feedba
k 50system, an additional experiment is performed whi
h simulates a delayednegative relevan
e feedba
k s
enario in whi
h it is assumed that a 
ertainper
entage of mis
lassi�ed messages will never be moved to the 
orre
tmailfolder (and therefore will not be used for de-training and re-training
lasses).In �gures 5.5 and 5.6 the results are depi
ted for situations in whi
h 0%,10% and 20% of the number of mis
lassi�ed messages is assumed to be nevermoved to the 
orre
t mailfolder. The delay range was set on [0; 20℄.
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e Feedba
k, Edmond 
orpusThe graphs show that, as was supposed, a higher \lazy" per
entage resultsin a little de
reased a

ura
y. Fortunately, in real life, the user shall not
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lusion 51bene�t by not moving mis
lassi�ed messages to the 
orre
t folder, whi
htherefore makes it reasonable to assume that this o

urs rarely.5.5 Con
lusionIn this 
hapter an elegant solution to the problem of obtaining relevan
efeedba
k in a real-life situation has been provided: the negative relevan
efeedba
k s
enario (5.2). Negative relevan
e feedba
k ensures that the useronly needs little e�ort in keeping the system a

urate, as he only needs tomove mis
lassi�ed messages to the 
orre
t mailfolder (whi
h should o

urrarely, after an a

eptable level of a

ura
y is a
hieved).Results of experiments that simulate the negative relevan
e feedba
k s
enarioshow that, even in the presen
e of \lazy" users, a very a

eptable level ofa

ura
y 
an be a
hieved. Therefore it might be 
on
luded that E-Sl�ve
ould be
ome a useful and valuable addition to any (Java-
ompliant) email-
lient.
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Chapter 6Con
lusionLooking at the results of experiments performed in this thesis, the overall
on
lusion is that E-Sl�ve 
ould be
ome a useful and valuable addition toany Java-
ompliant email-
lient.The 
ore of E-Sl�ve, an \in
remental" Balan
ed Winnow (learning algo-rithm), has (empiri
ally) proved to be very a

urate in 
lassifying emails(and short newspaper arti
les). Initially 
omparing E-Sl�ve to LCS, a sys-tem that uses Balan
ed Winnow in a \bat
hed" fashion, the results of E-Sl�ve were, after a reasonable number of training examples, roughly asgood as the results of LCS. Only for small numbers of training examples,E-Sl�ve performed worse than LCS. A

ording to these results, E-Sl�veseemed already promising in automati
 email 
lassi�
ation, but an evenhigher a

ura
y with E-Sl�ve was sought for by exploring some (possible)optimalisation.Three (possible) optimalisations for E-Sl�ve were explored. Two of thoseslightly 
hange the training heuristi
 of Balan
ed Winnow: Turbo-Trainingand Aggressive-Training. The third provided a di�erent heuristi
 in 
lassi-fying a new message: Certainty Based Classi�
ation.The results of Certainty Based Classi�
ation, whi
h ensures that new mes-sages are 
lassi�ed a

ording to a \
ertainty", were not satisfying. The mainreason for this was that, parti
ularly for small numbers of training examples,
lassi�ers were extremely \un
ertain" about their predi
tion.On the other hand, the results of Turbo-Training and Aggressive-Trainingwere quite satisfying. Turbo-Training, an alternative for iterative trainingwhi
h 
onserves in
rementality, resulted in a strong speedup of the initiallearning pro
ess, as 
lasses 
onsisting of only few training examples werelearned mu
h better. Aggressive-Training, whi
h ensures that a new mes-sage is trained iteratively until the algorithm predi
ts the 
orre
t 
lass forthis message, resulted in a slight speedup of the initial learning pro
ess.



Chapter 6 Con
lusion 54Although Aggressive-Training did not perform as well as Turbo-Training,it is useful in realising a s
enario suitable for a real-life situation (negativerelevan
e feedba
k).E-Sl�ve (in
rementally) learns from (new) messages a

ording to the feed-ba
k that is provided on messages that have been 
lassi�ed. In a real-lifesituation, this relevan
e feedba
k must be obtained from the user in orderto remain a

urate. A diÆ
ult point is then to obtain relevan
e feedba
ksu
h that the user will not �nd it annoying. In this thesis an elegant solu-tion to this problem has been provided, named negative relevan
e feedba
k.Negative relevan
e feedba
k ensures that the user only needs little e�ort inkeeping the system a

urate, as he only needs to move mis
lassi�ed messagesto the 
orre
t 
lass (mailfolder). Results of experiments (whi
h simulateda real-life situation) have shown that, using negative relevan
e feedba
k, ahigh level of a

ura
y 
an be a
hieved.6.1 Future resear
hThe ideas for the issues mentioned in this se
tion were all a
quired duringthe produ
tion of this thesis, but there was no time left to explore them.6.1.1 Term sele
tionMost 
lasses depend only on a small subset of indi
ative features and noton all the features that o

ur in do
uments that belong to that spe
i�

ategory. Therefore, it seems plausible to dis
ard \noisy" features for every
lass, as it improves eÆ
ien
y and possibly also the a

ura
y of the 
lassi�er.Some 
lassi�
ation systems (like LCS, see [12℄) have a feature sele
tion pre-pro
essing stage. In an in
remental approa
h this is not possible, be
ausethe 
lass pro�les are build \on-the-
y", adding new features as in
omingdo
uments are pro
essed. Therefore, a proposal for a new term sele
tionte
hnique that 
ould be used for in
remental training (with Balan
ed Win-now) is introdu
ed.Motion-based term sele
tionAs in [13℄ is shown, the Winnow k-steps strategy does not work well. There-fore another strategy, based on the number of promotions and demotions(together 
alled motions) of a feature, is proposed.This te
hnique uses a UC ratio, whi
h is de�ned as follows:UCf = jpromof � demof jpromof + demof
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h 55in whi
h promof is the number of promotions for feature f and demofthe number of demotions for that feature. This ratio is an indi
ator ofthe un
ertainty (see [17℄) in the 
ontribution of this feature to the s
ore.Apart from the 
ase in whi
h promof = demof = 0, this value more or lessde
reases from 1 to a small number.Example approa
hes for sele
ting terms (expli
itly or impli
itly) are:� Expli
it{ dis
ard all terms for whi
h UC < k holds, in whi
h k is a 
ertainthreshold.{ sele
t the top k terms per 
lass with the highest UC.� Impli
itadapt the s
ore 
omputation of Balan
ed Winnow, as follows:S
(d) = mXj=1(w+
 (fj)� w�
 (fj)) � sd(fj) � UCfj > �Note that for the expli
it approa
hes something \smart" has to be done,as features that have been dis
arded 
ould be
ome important again in thefuture.6.1.2 Threshold rangeRe
ent resear
h with LCS 1 explored the e�e
t of di�erent values for ��and �+ on the 
lassi�
ation a

ura
y of Balan
ed Winnow. Performing anexperiment in whi
h for several di�erent 
ombinations of �� and �+ the
lassi�
ation a

ura
y was determined, it was found that using �� = 0:6and �+ = 3:0 resulted in an in
reased a

ura
y of roughly 3% 
ompared toresults that were already very good.Be
ause LCS uses Balan
ed Winnow in a \bat
hed" fashion, it is useful toperform a similar experiment for E-Sl�ve (whi
h uses Balan
ed Winnowin an \in
remental" fashion) to 
he
k whether this results in an in
reaseda

ura
y also.
1Linguisti
al Classi�
ation System, developed at the Katholieke Universiteit ofNijmegen
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lusion 56A qui
k test using �� = 0:6 and �+ = 3:0, yielded the results as depi
ted in�gures 6.1 and 6.2.
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Figure 6.1: Theta test, Reuters mono subset 
orpus
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Figure 6.2: Theta test, Edmond 
orpusFrom the results is 
lear that modifying the thresholds in
reases the over-all learning behaviour quite extremely. Note that the Aggressive-Trainingheuristi
 (4.2) was used for this test.6.1.3 Certainty Based Classi�
ationAs the results of experiments in this thesis showed, Certainty Based Clas-si�
ation did not perform well. The main reason for this was that manydo
uments were 
erti�ed \un
ertain". In order to make this 
lassi�
ation
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 work, more resear
h has to be done. For example, the \un
ertain"do
uments 
ould be examined and removed from the train set in order to seeif a

ura
y grows. Also adaptions to the yes-probability and no-probability
ould be sought for, in order to a
hieve more reliable 
ertainty measures.6.2 Further workE-Sl�ve should be adapted to a popular (Java-
ompliant) email-
lient su
has Nets
ape Messenger.



Chapter 6 Con
lusion 58



A
knowledgementsI would like to thank the 
ompany Edmond R&D that generously o�eredme a pla
e for writing this thesis.Spe
ial thanks to:- Prof. C.H.A Koster and Dr. Paul Jones, who generously assisted meduring this thesis.- My parents- Marieke Linders, for her love and support.





Bibliography[1℄ Apt�e C., Damerau F. Automati
 learning of de
ision rules for text
ategorization. ACM Transa
tions on Information Systems, 12(3):233{251, january 1994.[2℄ Barret R. and Selker T. AIM: A new approa
h for meeting informationneeds. Te
hni
al Report, IBM Resear
h, o
tober 1995.[3℄ Beney J. The LCS Pro�ling System User Manual. version 1.2, may2000.[4℄ Blum A., Mit
hell T. Combining labeled and unlabeled data with 
o-training. In Pro
eedings of the Eleventh Annual Conferen
e on Com-putational Learning Theory, pages 92{100.[5℄ Cohen W.W. Fast e�e
tive rule indu
tion. Ma
hine Learning: Pro
eed-ings of the Twelfth International Conferen
e, 1995.[6℄ Cohen W.W. Learning Rules that Classify E-mail. In Pro
eedings of the1996 AAAI Spring Symposium on Ma
hine Learning and InformationA

ess, pages 18{25, 1996.[7℄ Cohen W.W. Learning with Set-valued Features. In Pro
eedings of theThirteenth National Conferen
e on Arti�
ial Intelligen
e, 1996.[8℄ Dagan I., Karov Y., Roth D. Mistake-driven learning in text 
atego-rization. In Pro
eedings of EMNLP-97, 2nd Conferen
e on Empiri
alMethods in Natural Language Pro
essing, 1997.[9℄ Helfman J. Isbell C. Ishmail: Immediate Identi�
ation of ImportantInformation. In Pro
eedings of ECIR 2002, 1995.[10℄ Joa
hims T. Text 
ategorization with Support Ve
tor Ma
hines: learn-ing with many relevant features. In Pro
eedings of ECML-98, 10thEuropean Conferen
e on Ma
hine Learning, version 1.2, may 2000.[11℄ Kirit
henko S., Matwin S. Email Classi�
ation with Co-Training. o
-tober 2001.



[12℄ Koster C.H.A. IR2 di
taat: Full-Text Information Retrieval. mar
h2002.[13℄ Koster C.H.A., Ragas H. Four text 
lassi�
ation algorithms 
omparedon a dut
h 
orpus. In Pro
eedings of SIGIR-98, 21st ACM InternationalConferen
e on Resear
h and Development in Information Retrieval, au-gustus 1998.[14℄ Littlestone N. Learning qui
kly when irrelevant attributes abound: Anew linear-threshold algorithm. Ma
hine Learning, 2:285{318, 1988.[15℄ Maes P. Agents that Redu
e Work and Information Overload. Com-muni
ations of the ACM, 37(7):31{40, july 1994.[16℄ Payne T.R., Edwards P. Interfa
e Agents that Learn: An Investiga-tion of Learning Issues in a Mail Agent Interfa
e. Applied Arti�
ialIntelligen
e, 11:1{32, 1997.[17℄ Peters C., Koster C.H.A. Un
ertainty-based noise redu
tion and terms-ele
tion in text 
ategorization. ECIR 2002, april 2002.[18℄ Provost J. Na��ve Bayes vs. Rule-Learning in Classi�
ation of Email. InPro
eedings of ECIR 2002, 2000.[19℄ Ro

hio J.J. Relevan
e feedba
k in Information Retrieval. The SmartRetrieval system - experiments in automati
 do
ument pro
essing, pages313{323, 1971.[20℄ Ryen et. al. The Use of Impli
it Eviden
e for Relevan
e Feedba
k inWeb Retrieval. In Pro
eedings of ECIR 2002, mar
h 2002.[21℄ Sebastiani F. Ma
hine Learning in Automated Text Categoriza-tion. Te
hni
al report IEI-B4-31-1999, Instituto di Elaborazionedell'Informazione, Consiglio Nazionale delle Ri
er
he, Pisa, IT, 1999.Submitted for publi
ation to ACM Computing Surveys., 2000.[22℄ Segal R.B. and Kephart J.O. SwiftFile: An intelligent assistant fororganizing email. In AAAI 2000 Spring Symposium on Adaptive UserInterfa
es, 2000.


