
E-Sl�vean inremental approah to automated, ontent-basedemail lassi�ation
Masters Thesis: 505by:Christiaan Rudolfsrudolfs�si.kun.nl

Katholieke Universiteit Nijmegen (KUN)dept. Computing SieneSupervisors:Prof. C.H.A. Koster (KUN)Dr. Paul Jones (Edmond R&D)2nd August 2002

Contents
1 Introdution 11.1 Previous work . 11.2 Problem statement . 31.3 Overview . 32 Automati Doument Classi�ation 52.1 Supervised learning algorithms 52.1.1 Training linear lassi�ers 62.2 Balaned Winnow . 72.2.1 Threshold range . 92.3 Bathed vs. inremental learning 92.3.1 Bathed learning . 92.3.2 Inremental learning 103 Inremental learning 133.1 Di�erent situations . 133.2 E-Sl�ve . 143.2.1 Feature extration . 143.2.2 Internal proess . 153.2.3 Weight initialisation 163.2.4 Determining the relevant lass 173.3 E-Sl�ve vs. LCS . 173.3.1 Corpora . 173.3.2 Measures: Preision, Reall, Auray 183.3.3 Experiment: Learning behaviour 203.3.4 Results: Learning behaviour 223.3.5 Experiment: Mistake behaviour 263.3.6 Results: Mistake behaviour 273.3.7 Performane . 273.4 Conlusion . 28i

4 Optimalisations 294.1 Turbo-Training . 294.1.1 What is Turbo-Training 294.1.2 Experiment . 304.1.3 Results . 304.2 Aggressive-Training . 334.2.1 Experiment . 334.2.2 Results . 334.3 Certainty-based lassi�ation 364.3.1 Experiment . 374.3.2 Results . 384.4 Conlusion . 395 Negative relevane feedbak 415.1 Obtaining relevane feedbak 415.2 Negative relevane feedbak 425.2.1 Inremental learning proess 435.3 Non-delayed negative relevane feedbak 445.3.1 Experiment . 445.3.2 Results . 455.4 Delayed negative relevane feedbak 475.4.1 Experiment . 475.4.2 Results . 485.4.3 Lazyness . 485.5 Conlusion . 516 Conlusion 536.1 Future researh . 546.1.1 Term seletion . 546.1.2 Threshold range . 556.1.3 Certainty Based Classi�ation 566.2 Further work . 57Bibliography 61

ii

Chapter 1IntrodutionOn-line ommuniation, in partiular email ommuniation, has an explosivegrowth. Espeially large ompanies are often ooded with thousands ofeletroni messages a month. Management of these emails is very important,as this enables a faster proessing and easier retrieval of (old) messages.A way of managing emails is to lassify every email into a pre-de�ned ate-gory (mailfolder), whih applies to that email. Performing this lassi�ationtask by hand often is a diÆult and time-onsuming (thus expensive) job.Therefore an email lassi�ation system, whih automatially lassi�es in-oming emails, beomes very useful.An email lassi�ation system has to be far more powerful than the \�lter"funtions provided by email pakages that �le inoming messages aordingto the sender's name, or a word in the subjet line, as these often suggestnothing about the message's ontent. To e�etively ategorize email, thesystem would have to analyze the full text of every message. Furthermorethe system must be able to quikly adapt to hanges in its dynami emailenvironment, and the user should not endure additional burdens using thesystem.1.1 Previous workMuh researh has reently been vested in theoretial onerns surroundingthe problem of text lassi�ation (also known as text ategorization). Manypubliations are desribing issues dealing with this problem. On the otherhand, the problem of automati email lassi�ation is rather new to sienti�researh, as systems for ategorizing emails into di�erent lasses are just nowbeoming available. Most publiations desribing automati email lassi�-ation are dealing with theoretial onerns (e.g. omparing lassi�ationauray for di�erent learning algorithms) surrounding the appliability of

Chapter 1 Introdution 2text lassi�ation to the problem of automati email lassi�ation. Only afew publiations deal with pratial onerns for automati email lassi�-ation (e.g. the problem of user-interation in a real-life situation).In [6℄ methods for learning text lassi�ers are ompared, fousing on thekinds of lassi�ation problems that might arise in the �ltering and �lingof personal email messages. An extended version of the rule-based learningalgorithm RIPPER is ompared with the traditional IR learning algorithmRohio ([19℄). The extended RIPPER algorithm seemed to perform beston various email orpora, although Rohio performed very well also.In [18℄ three experiments are presented, omparing a Na��ve Bayesian algo-rithm with bag-valued features against the RIPPER rule learning algorithm([5℄) in di�erent email lassi�ation tasks. In learning a user's foldering pref-erenes, and learning to detet spam, the Bayesian lassi�er substantiallyoutperformed RIPPER in lassi�ation auray. In reonstruting the pol-iy of an automated, rule-based email lassi�er, both systems performedvery well, but the Bayesian lassi�er still showed a small but statistiallysigni�ant improvement over RIPPER.In [11℄ it was empirially proved that o-training [4℄ an be applied to emaillassi�ation. At the same time it was shown that the performane of o-training depends on the learning method it uses. Namely, Na��ve Bayesperformed very poorly in the experiments while Support Vetor Mahines([10℄) worked very well. Though, more researh is needed to larify theauses of the poor behaviour of Na��ve Bayes in ombination with o-trainingand explore other possibilities (along with feature seletion) to improve theperformane of Na��ve Bayes in the o-training loop.In [9℄ a ustomizable email lassi�ation system, Ishmail, has been desribedthat addresses the problem of information overload. Ishmail is unique inthat it not only sorts messages into mailboxes, but it orders mailboxes bya ombination of user-spei�ed priorities and alarms. In this artile, Ish-mail's design is diagramed in terms of its funtional omponents and theirinterations.In [22℄ results are demonstrated of Swift�le, an email assistant that helpsusers organize their (personal) email into folders. Using a text lassi�er thatdynamially adjusts to the user's mail-�ling habits, Swift�le predits for eahinoming message the three folders that it deems most likely to be hoosenby the user as destinations. Swift�le uses a modi�ed version of AIM [2℄ forlassifying text. AIM is a TF-IDF style text lassi�er developed at IBMAlmaden. Results of their experiments showed that inremental learning(2.3) with this AIM lassi�er performs very well in lassifying emails.

1.2 Problem statement 31.2 Problem statementThis thesis disusses both theoretial and pratial onerns surroundingthe appliability of text lassi�ation to the problem of email lassi�ation.Using a prototype, alled E-Sl�ve (3.2), the following issues are explored:Theoretial issues:� How appliable is inremental learning (2.3) for the Balaned Winnowalgorithm (2.2), to automati, ontent-based email lassi�ation, andwhat are the di�erenes with respet to bathed learning.� Is it possible to extend or modify the Balaned Winnow algorithm,suh that an inreased lassi�ation auray with inremental learn-ing is ahieved.Pratial issues:� How to modify E-Sl�ve suh that, in a real-life situation, the user onlyneeds little e�ort in keeping the system aurate.1.3 OverviewIn hapter 2, the domain of automati doument lassi�ation is introdued,the working of Balaned Winnow is desribed, and the di�erenes betweenbathed learning and inremental learning are explained. In hapter 3, theprototype E-Sl�ve is introdued, whih provides the ore funtionality foran email lassi�ation system. Using results of experiments, the auray ofE-Sl�ve in lassifying emails is explored. Next, in hapter 4, some (possible)optimalisations to E-Sl�ve are introdued for ahieving higher lassi�ationauray. In hapter 5, negative relevane feedbak is introdued, whih isdesribed as a senario that enables users in a real-life situation to keep thesystem aurate with only little e�ort. Finally, in hapter 6, several issuesfor future researh are mentioned.

Chapter 1 Introdution 4

Chapter 2Automati DoumentClassi�ationIn doument lassi�ation, given a text doument (e.g. an email) and a ol-letion of potential lasses, an algorithm deides whih lasses the doumentbelongs to, or how strongly it belongs to eah lass. More formally it anbe desribed as follows (see [12℄):Given a set of lasses (topis) C and examples for eah lass, onstruta lassi�er for eah lass whih, given a doument d, omputes therelevane of doument d for the lass.A lassi�er for a lass is thus a funtion whih expresses the relevane ofdouments for lass .Classi�ers have to be learned. Many di�erent learning algorithms for textlassi�ers exist, all of them using di�erent tehniques in learning the lassi-�ers. In this thesis the learning algorithm Balaned Winnow (2.2) is used.Balaned Winnow belongs to the lass of supervised learning algorithms.2.1 Supervised learning algorithmsLearning algorithms for doument lassi�ation (also known as text las-si�ation/ategorization) bring together tehniques from IR (InformationRetrieval) and AI (Arti�ial Intelligene). For an overview of the literaturein this �eld see [21℄. In this thesis only one supervised learning algorithm(Winnow) is explored.Supervised learning algorithms use (labeled) training data to learn lassi-�ers whih lassify new texts. Douments in a orpus, whih onsists of a setof \typial" pre-lassi�ed example douments for eah lass, form this train-ing data. Eah doument in this orpus is labeled by one or more lasses. A

Chapter 2 Automati Doument Classi�ation 6doument is onsidered as a positive example for all lasses with whih it islabeled and as a negative example for all lasses with whih it is not labeled.Three broad lasses of supervised learning algorithms an be distinguished:1. linear lassi�ersLearning algorithms for linear lassi�ers lassify new douments a-ording to the sore for eah lass that is obtained by taking an in-produt of lass pro�le (weighted vetor of keywords) and doumentpro�le (2.1.1). Good examples are Rohio ([19℄) and (Balaned) Win-now ([14, 8℄).2. rule-based lassi�ersLearning algorithms for rule-based lassi�ers learn by inferring a setof rules from pre-lassi�ed douments. A good example is the Ripperalgorithm ([5, 7℄).3. example-based lassi�ersLearning algorithms for example-based lassi�ers lassify a new do-ument by �nding the k nearest to it in the train set and doing someform of majority voting on the lasses of these nearest neighbours (see[10℄).In this thesis Balaned Winnow (2.2) is used. This algorithm trains linearlassi�ers.2.1.1 Training linear lassi�ersText lassi�ers represent a doument d by a set of features:F (d) = ff1; f2; � � � ; fmg, where m is the number of unique features in thedoument. In this thesis a feature is represented by a single word. Everyfeature f has a strength in any doument d, denoted by sd(f). Several waysto ompute this strength are found in the Information Retrieval literature:� boolean strength: sd(f) = 1 or 0, indiating respetively the preseneor absene of feature f in d.� frequeny strength: sd(f) = n(f; d), reeting the number of times fappears in d.� square root strength: sd(f) = pn(f; d), reeting the square root ofthe number of times f appears in d.In E-Sl�ve (3.2), square root term strengths are used, beause in [8℄ it wasexplored that using square root term strengths resulted in the best aurayompared to the other methods of omputing term strengths.

2.2 Balaned Winnow 7A linear (text) lassi�er represents a doument pro�le for a doument d bya vetor of its feature strengths: sd = (sd(f1); sd(f2); � � � ; sd(fm)).A ategory is represented by a weighted vetor of keywords (also alled lasspro�le): w = (w(f1); w(f2); � � � ; w(fn)), where n is the number of featuresin the domain and w(fi) is the weight of the i-th feature for lass .The sore of doument d for lass , denoted as S(d), is evaluated by om-puting the dot produt of weight vetor w and feature strength vetor sd:S(d) = Xfi2F (d) sd(fi) � w(fi)The algorithm lassi�es a doument aording to the sores it ahieves forall lasses. When the sore for a lass is above a ertain threshold, then thedoument is lassi�ed as relevant for that lass. This makes it possible fora doument to be lassi�ed in more than one lass, whih is alled multi-lassi�ation. In mono-lassi�ation the doument is assigned to exatlyone lass.The task of a learning algorithm for linear text lassi�ers is to �nd weightvetors (lass pro�les) whih best lassify new douments. In the next se-tion, it is explained how Balaned Winnow performs this task.2.2 Balaned WinnowBalaned Winnow ([8℄) is a variant of Littlestone's Winnow algorithm ([14℄).Winnow (like Support Vetor Mahines [10℄) lassi�es douments by learninglinear separators (lassi�ers) (2.1.1) in the feature spae. Winnow is an on-line and mistake-driven learning algorithm. It is on-line in the sene thata lassi�er X for lass �rst predits the relevane of a doument for lass and then reieves feedbak, alled relevane feedbak, on this predition,whih may be used to update the urrent hypothesis (vetor of weights) ofthe lassi�er. Beause this hypothesis is only updated when the algorithmhas made a wrong predition (and thus made a mistake), Balaned Winnowis alledmistake-driven. The urrent vetor of weights represents the urrentstate of the lassi�er.To learn lassi�ers (whih may be interpreted as �nding good weight ve-tors), usually a set of pre-lassi�ed douments from a orpus is used as thetraining data. This is alled the train set. In a train set eah doument islabeled by one (mono-lassi�ation) or more (multi-lassi�ation) lasses.A doument is onsidered as a positive example for all lasses with whih itis labeled and as a negative example for all lasses with whih it is not la-beled. The labeling of the douments is used to provide \perfet" relevanefeedbak.

Chapter 2 Automati Doument Classi�ation 8Balaned Winnow has three parameters: a threshold �, and two updateparameters, a promotion parameter � and a demotion parameter �. Theyare hoosen as follows: � = 1� > 10 < � < 1The algorithm maintains two weights for every feature: w+ and w�. Theoverall weight of a feature is the di�erene between these two weights, thusallowing for negative weights. We have seen (2.1.1) that a doument d isdenoted as a vetor of its feature strengths: sd = (sd(f1); sd(f2); � � � ; sd(fm)),where m is the number of unique features in doument d and sd(fm) is thestrength of the m-th feature in d. Now, given a doument d, a lassi�er Xfor lass predits that this doument is relevant for that lass if:S(d) = mXj=1(w+ (fj)� w� (fj)) � sd(fj) > �in whih w(fj) is the weight of the j-th feature in doument d for lass .The initialisation of the weights will be disussed later (3.2.3). For now itis important to know that w+ has an initial value that is 2 times the valueof w�. In ase a lassi�er X makes a wrong predition, weight vetor wwill be updated. Only the weights of features in w that also our in thedoument (the ative features) are updated. This happens aording to thefollowing update rules:1. Positive exampleIf S(d) < � ^ d 2 , then for all ative features, w+ is promoted bymultiplying it with � and w� is demoted by multiplying it with �.This results in an inreasing overall weight (w+ � w�) for all ativefeatures, whih promotes the positive example d.2. Negative exampleIf S(d) > � ^ d =2 , then for all ative features, w+ is demoted bymultiplying it with � and w� is promoted by multiplying it with �.This results in a dereasing overall weight for all ative features, whihdemotes the negative example.This promoting and demoting of weights ensures that the lassi�ers learnfrom their mistakes.

2.3 Bathed vs. inremental learning 92.2.1 Threshold rangeAn extension to this algorithm is the thik-threshold heuristi (see [8℄). Inthis ase the sores for positive and negative examples are separated aswidely as possible. The idea is to introdue two separate thresholds: �+and ��, suh that �+ > ��. Now a lassi�er X for lass predits that adoument d is relevant for lass if S(d) > �+. A doument is preditedto be irrelevant if S(d) < ��. All sores within the range [��; �+℄ areonsidered mistakes.When this heuristi is used, a positive example (d 2) is promoted whenS(d) < �+ and a negative example (d =2) is demoted if S(d) > ��. Inthis way the sores for all positive examples are widely separated from thesores for negative examples. E-Sl�ve uses this heuristi.2.3 Bathed vs. inremental learningNow that it has been explained how Balaned Winnow works, there remainsan important issue unmentioned. This issue onerns the overall lassi�a-tion proess. This lassi�ation proess de�nes the way how lassi�ers arebuild, the moments when lassi�ers are trained and the moments when theselassi�ers are used to lassify new (unseen) douments. We onsider twodi�erent approahes for this proess: bathed learning (as in LCS 1 ([3℄)and inremental learning (as in E-Sl�ve (3.2)). Note that, while explain-ing these approahes, it is assumed that the learning algorithm BalanedWinnow (2.2) is used.2.3.1 Bathed learningThe bathed learning approah distinguishes a training phase and a produ-tion phase. The training phase is used to train the lassi�ers, while theprodution phase is used to apply the trained lassi�ers to lassify new(unseen) douments. The lassi�ation proess for this approah onsists ofthe following steps:1. Collet statistis on the train set.2. Create initial lass pro�les.3. Train iteratively on all douments of the train set (training phase).4. Classify new douments (prodution phase).1Linguistial Classi�ation System, developed at the Katholieke Universiteit ofNijmegen (KUN)

Chapter 2 Automati Doument Classi�ation 10In this approah, training an be done iteratively on all the douments inthe train set. As Balaned Winnow is sensitive to the ordering of trainingdouments, after eah iteration the douments in the train set are shu�edrandomly. Iterating an be done for a �xed number of times or until thelassi�ers do not make any mistakes (2.2) on the train set anymore. Whenthe training phase is �nished, the lassi�ers have reahed their �nal state.This implies that, during the prodution phase, the lassi�ers do not hange,whih means that new douments are not used for training.Eah step in this proess an not be performed until its previous step hasbeen performed. Therefore this (bathed learning) approah has some re-stritions in our situation (that deals with email lassi�ation in a dy-nami environment). These restritions are:� the required presene of a train set, whih must be preserved.� the required training of a bath of douments before the produtionphase an be started.� lassi�ers do not learn (immediately) from new douments.� lassi�ers have to be learned from srath, when additional trainingwith new douments is desired, adding new plus trained douments.2.3.2 Inremental learningThe global proess for inremental learning onsists of two simple steps:1. Collet lass names.2. Classify new douments (prodution phase).What we see is that, in ontrast with bathed learning, inremental learn-ing does not require the presene and preservation of a train set. Initialtraining is not required either. The only information that must be avail-able from start, are the names of potential lasses in whih new doumentsan be lassi�ed. The algorithm an therefore diretly start lassifying new(unseen) douments in the prodution phase.In an inremental learning situation, lassi�ers are trained inrementallyduring the prodution phase, never reahing a �nal state. This means thatevery new and relevant doument that arrives will be used immediately(after obtaining relevane feedbak (5.1)) to update existing lassi�ers fromtheir urrent state. In this way, lassi�ers are trained one single doumentat a time, after whih they are ready to lassify new douments again. Thisis a big di�erene with bathed learning, where a whole bath of douments

2.3 Bathed vs. inremental learning 11is trained iteratively from srath, before the prodution phase an evenbe started. Note that training iteratively on a train set is not possible inthe inremental learning situation (as the train set is not preserved), whihmakes another di�erene with bathed learning.In a real-life situation, several ways to obtain relevane feedbak (whih isthe information about a doument that indiates the lass for whih thatdoument is most relevant, aording to an \expert"), are imaginable. Inhapter 5 this issue is explored. For now it is only important to notie thatreieving feedbak on the relevane of a new doument is neessary, as non-relevant douments do not belong to any of the potential lasses and aretherefore useless training examples.In the domain of email lassi�ation, inremental learning is preferable. Theadvantages are:� the prodution phase an be started right away (no pre-lassi�ed do-uments nor initial training are required).� lassi�ers learn immediately from new douments, whih enables themto adapt to slight hanges in the \meaning" of topis (lasses) over time(whih is useful within the email domain).� lassi�ers are trained one single doument at a time (no bath), whihmakes periods of training very short and ensures that lassi�ers areready for lassifying new douments immediately.

Chapter 2 Automati Doument Classi�ation 12

Chapter 3Inremental learningThe email environment is very dynami. Contents of new messages and theuser's mail �ling habits onstantly hange. For email lassi�ers it is impor-tant to adapt to these hanges, preferably as soon as possible. Some emaillassi�ation systems adapt to these hanges by retraining from srath ona daily basis (mostly over night) (see [15℄, [16℄). A potential disadvantage ofthis bathed learning (2.3) is that the system may not be suÆiently respon-sive to the above mentioned hanges. Therefore, a better way of adaptingto hanges would be to update existing lassi�ers from their urrent stateimmediately after a ertain event ours (whih an be the arrival of a newemail, the movement of an email from one folder to another, and more..).This is what is alled inremental learning. In paragraph 2.3 inrementallearning has been desribed more thoroughly.3.1 Di�erent situationsIn [22℄ was demonstrated, that in a dynami email environment inrementallearning indeed performs better than periodi (bathed) learning. However,an important detail is that a di�erent algorithm was used. This algorithman inrementally update lassi�ers with a single new doument, obtainingthe same state of the lassi�ers as it would have obtained by retrainingthe lassi�ers from srath inluding the new doument. The onsequeneof this is, that in a stati environment the results of inremental learningequal the results of bathed learning. This does not hold for the BalanedWinnow algorithm.In a stati environment, Balaned Winnow should perform better in abathed learning situation than in an inremental learning situation. Thisassumption an be made for two reasons:1. in a bathed learning situation lassi�ers have statistis on the whole

Chapter 3 Inremental learning 14train set, while in an inremental learning situation lassi�ers onlyhave statistis upto the urrent state of the system, starting with nostatistis at all.2. in a bathed learning situation lassi�ers train iteratively on all dou-ments in a train set, while in an inremental learning situation lassi-�ers are trained with one single doument not having the possibilityof training iteratively on all douments in a train set.Espeially the seond point is assumed to have great impat on the results,beause training iteratively on all douments from a train set ensures thatlassi�ers get to know their lass members (and non lass members) better.Therefore, in this hapter the performane of inremental learning omparedto bathed learning for the Balaned Winnow algorithm is explored.3.2 E-Sl�veFor this thesis, a system alled E-Sl�ve was developed, whih provides theore funtionality for an email lassi�ation system. E-Sl�ve is oded in theJava programming language. The tools, runtimes and APIs that are used,were all provided by the Java 2 Platform, Standard Edition 1. E-Sl�velearns, aording to the inremental learning approah (2.3) applied to theBalaned Winnow algorithm (using the thik-threshold heuristi (2.2.1)).The system is (urrently) only suitable for mono-lassi�ation, where everydoument is assigned to exatly one lass. No linguistial tehniques (e.g.stemming), stoplists or other pre-proessing \instruments" are used.3.2.1 Feature extrationA text lassi�er represents a doument by its features strengths. E-Sl�verepresents features as single words, and extrats them from a doumentaording to the following riteria:� a feature should begin with a letter.� a feature should have a minimum length of two haraters.Email addresses are ut into piees. For example the email address hris-tiaan�edmond.nl is ut into three features (hristiaan, edmond, nl). Thisprevents that, when a person has multiple email addresses within the samedomain, these addresses are identi�ed as two di�erent features. For exam-ple the same person ould also have the email address hristiaan.rudolfs�ed-1http://java.sun.om/j2se/

3.2 E-Sl�ve 15mond.nl. When these email addresses are not ut into piees, these two ex-ample email addresses would be identi�ed as two di�erent features, while itbelongs to the same person. Whether utting email addresses into pieesinuenes the lassi�ation auray in a positive or negative manner, if itinuenes the auray at all, is not known.3.2.2 Internal proessE-Sl�ve follows the inremental learning approah. In 2.3, the proess forthis approah has been desribed already, but this time more details aregiven.1. Collet lass names.2. Classify new emails (prodution phase).(a) Classify one new email aording to the urrent state of the las-si�ers.(b) Obtain relevane feedbak on the email.() Extend all lass pro�les (weight vetors) with the terms that o-ur in the email.(d) Inrementally train all lassi�ers with the single email (BalanedWinnow (2.2)), using it as a positive example for the lass forwhih it is relevant (aording to the reieved feedbak in (b))and as a negative example for all other lasses.Formal desriptionad 1):Obtain potential lasses: f1; 2; � � � ; zg, where z is the number of lasses.ad 2(a)):For eah lass i, there exists a lassi�er Xi with weight vetor wi . Thisweight vetor is initially empty. A new email e arrives, and will be lassi�edaording to the urrent weight vetor wi for all lassi�ers Xi .ad 2(b)):Get the lass x for whih email e is relevant (if there is any), aording tothe label of e (in an experimental environment) or aording to the feedbakfrom an \expert" user (real-life situation, see also hapter (5)).ad 2()):Extend eah weight vetor wi with all the features (initial weighted) thatour in e. In this way, weight vetor wi will ontain many negative features,whih are the features that do not our in any of the examples for lass i.

Chapter 3 Inremental learning 16ad 2(d)):When lassi�er Xx makes a mistake aording to the thik-threshold heuris-ti (2.2.1), the ative features (2.2) of weight vetor wx are promoted. Forall other lassi�ers Xi for whih i 6= x it holds that, when they make amistake, the ative features in weight vetor wi are demoted.Note that step 2(a) to 2(d) are repeated, every time a new message arrives.3.2.3 Weight initialisationAn important issue is the initialisation of the Winnow weights w+ and w�.As we have seen already (2.2), these weights are used to ompute the soreof a doument d for lass :S(d) = mXj=1(w+ (fj)� w� (fj)) � sd(fj)When the weights are initialised signi�antly too low or too high, moredouments have to be trained to ahieve a ertain level of auray. Theideal initialisation of these weights, in the absene of any knowledge of theorret lasses of the douments, should have the property that it assigns toan average doument for every lass the sore � (whih is 1).In our situation (inremental learning), it is unknown what an average do-ument is, beause there are no statistis on the potential lasses available.For this reason, the hoie was made to modify sd(f), the strength of featuref in doument d, by using a quantity that is normalized with respet to thedoument length. Formally, the strength sd(f) is replaed by a normalizedstrength: snormd(f) = sd(f)Pi2F (d) sd(i)in whih snormd(f) is the normalized strength of feature f in doument d,and the other symbols are de�ned as in 2.1.1.This modi�ation makes it possible to initialise w+ to 2� and w� to �. Theexplanation for this is as follows:The average doument strength davg an be de�ned as:davg = Xf2F (d) snormd(f) = Xf2F (d) sd(f)Pi2F (d) sd(i) = Pf2F (d) sd(f)Pi2F (d) sd(i) = 1Consequently this leads to S(d) = � (=1), beause for every f 2 F (d) theoeÆi�ent of the Winnow weights is 1, as (w+�w�) = (2�� �) = � = 1. Asthis is the sore for a doument that we wanted, it is justi�ed to initialisew+ to 2� and w� to �.

3.3 E-Sl�ve vs. LCS 173.2.4 Determining the relevant lassThe algorithm lassi�es a doument aording to the sores it ahieves forall lasses. When the sore for a lass is above a ertain threshold, then thedoument is lassi�ed as relevant for that lass. Therefore it is possible thata doument will be lassi�ed in more than one lass (multi-lassi�ation).Beause this thesis deals with mono-lassi�ation, a new doument shouldbe lassi�ed in exatly one lass. To determine this lass, the sore S(d)of doument d is omputed for every lass , aording to the urrent state(weight vetor) of the lassi�ers, and then d is assigned to the lass for whihd obtained the highest sore.In 4.3 a di�erent method for determining the relevant lass is explored.3.3 E-Sl�ve vs. LCSIn this initial test the results of E-Sl�ve are ompared with the results ofthe Linguistial Classi�ation System (LCS ([3℄)). The purpose of this testis to ompare inremental learning (as in E-Sl�ve) with bathed learning(as in LCS) for the Balaned Winnow algorithm (2.2).First the orpora used in the experiments are desribed. Then some mea-sures are de�ned to determine the suess of lassi�ation. Finally the setupand results of experiments are desribed.3.3.1 CorporaIn this thesis two orpora are used to perform experiments. One orpus(Reuters mono subset) is no email orpus, but onsists of short newspaperartiles, whih have a good likeness with email messages. Beause it is knownthat the douments in this orpus are very well pre-lassi�ed, this orpusis very useful for running experiments. The other orpus (Edmond) is anemail orpus. This orpus has been reated espeially for this thesis, whihmeans that no experienes of running experiments on this orpus exist.Reuters mono subset orpusThe Reuters mono subset orpus onsists of a random seletion of 9090 pre-lassi�ed douments from the well-known Apte subset of the Reuters 21578orpus [1℄. The douments are short (mono-lassi�ed) newspaper artilesvery unevenly distributed over 66 lasses. Beause we are not interested inlassifying a huge number of douments, a subset of this orpus was reated.Important riteria for the subset are: a reasonable number of lasses shouldbe taken, the uneven distribution of douments over the lasses has to remain

Chapter 3 Inremental learning 18intat, and all lasses should ontain at least 10 example douments. Theorpus is alled the Reuters mono subset orpus. In table 3.1 the statistisfor the Reuters mono subset orpus are depited.Number of douments 3065Number of lasses 15Total number of words in orpus 404825Number of unique words in orpus 16169Average number of words per doument 132Average number of unique words per doument 75Smallest number of douments in a lass 12Largest number of douments in a lass 701Table 3.1: Statistis for the Reuters mono subset orpus.Edmond orpusThe Edmond orpus onsists of real emails from two running projets withinthe ompany Edmond R&D. The lass struture and the lassi�ation of theemails were manually onstruted. The two projets are merged into a singleorpus to get a larger doument set. In table 3.2 the statistis for this orpusare depited.Number of douments 1134Number of lasses 18Total number of words in orpus 264552Number of unique words in orpus 15327Average number of words per doument 233Average number of unique words per doument 121Smallest number of douments in a lass 8Largest number of douments in a lass 130Table 3.2: Statistis for the Edmond orpus.3.3.2 Measures: Preision, Reall, AurayIn determining the suess of lassi�ation, the measures Preision, Realland Auray are used throughout this thesis. These measures are based onseveral quantities that must be traked for every lass during the lassi�-ation proess. The quantities are:

3.3 E-Sl�ve vs. LCS 19� RS = Relevant Seleted, the number of relevant douments, lassi-�ed as relevant.� RNS = Relevant Not Seleted, the number of relevant douments,lassi�ed as irrelevant.� NRS = Not Relevant Seleted, the number of irrelevant douments,lassi�ed as relevant.� NRNS = Not Relevant Not Seleted, the number of irrelevant do-uments, lassi�ed as irrelevant.Now we an de�ne Preision and Reall as follows:Preision = RSRS +NRSReall = RSRS +RNSTo obtain a single measure for the whole orpus, the average Preision orReall is used. Two ways of averaging an be distinguished:1. Miro averageThe Preision (and Reall) is alulated by summing the quantitiesover all lasses. This average is dominated by the large lasses (thosewith many training douments).2. Maro averageThe Preision (and Reall) is alulated by summing the Preision(and Reall) for every lass and then dividing it by the number oflasses. This average is dominated by the small lasses.In mono-lassi�ation, miro-averaged Preision equalsmiro-averagedReall. This is explained as follows. When the algorithm lassi�es a dou-ment d in a lass i, for whih it is not relevant (the algorithm has made amistake), then NRSi is inreased by one. At the same time, say that d hadto be lassi�ed in lass j , RNSj is inreased by one. Consequently, thevalues of NRS and RNS in the above de�nitions of Preision and Reall areequal (as the quantities of all lasses are summed). The maro-averagedPreision and Reall usually are not equal.A good measure to indiate the Auray of the algorithm is the F1 -measure.This measure is de�ned suh that Preision and Reall are assigned equalimportane: F1 = 21Preision + 1Reall

Chapter 3 Inremental learning 20Note that this implies for miro-averaging that:F1miro = Preisionmiro = ReallmiroIn the rest of this thesis Auraymiro (= F1miro), and Auraymaro(= F1maro) are used to determine the auray of lassi�ation results.3.3.3 Experiment: Learning behaviourGlobal setupSeveral tests on both the Reuters mono subset orpus and Edmond orpuswere performed. For this purpose these orpora were split into a train setand a test set. The pre-lassi�ations of the douments in the orpus isused to provide the \perfet" relevane feedbak. Douments in the trainset are used to train lassi�ers, while douments in the test set are used todetermine the auray of the trained lassi�ers. For both orpora a trainset was hoosen suh that it onsists of 75% of the douments in the orpus.The test set onsists of the remaining 25% of the douments in the orpus.Tests on several di�erent train sets and test sets were performed to get morereliable results.Both orpora were partitioned in four parts: p1, p2, p3 and p4, eah timetaking one part as the test set and the other three parts as the train set. Inthis way, four separate tests for eah orpus are aquired:1. train set = fp1; p2; p3g, test set = fp4g2. train set = fp1; p2; p4g, test set = fp3g3. train set = fp1; p3; p4g, test set = fp2g4. train set = fp2; p3; p4g, test set = fp1gIn eah test the algorithm trains on inreasing parts of the train set (alledepohs), so that the learning behaviour of both systems an be ompared.The results of all four tests were averaged to determine the �nalAuraymiroand Auraymaro (3.3.2).E-Sl�ve spei� setupBeause Balaned Winnow is sensitive to the ordering of training douments,and E-Sl�ve (inremental learning) does not train iteratively on a bathof douments, all four tests were performed 10 times, eah time using a

3.3 E-Sl�ve vs. LCS 21randomly shu�ed version of the train set. For all four tests the results wereaveraged.The settings that were used for E-Sl�ve during this experiment are depitedin table 3.3. term strengths : sqrt� : 1:1� : 0:9�+ : 1:1�� : 0:9Table 3.3: Test settings for E-Sl�ve.LCS spei� setupIn ontrast with E-Sl�ve, LCS does not need di�erent shu�ed versions ofeah train set, beause the system iteratively trains on all douments out ofthe train set, internally shu�ing the train set after eah iteration. Beausethe results of two runs of the same test may vary (aused by the sensitivityto the ordering of training douments), eah test was performed 10 timesand the results were averaged.The settings that were used for LCS during this experiment are depited intable 3.4. term strengths : sqrtnormalize : linearterm seletion : o�� : 1:1� : 0:9�+ : 1:1�� : 0:9maxiters : 5Table 3.4: Test settings for LCS.Main di�erenesNote that the main di�erenes between E-Sl�ve and LCS are:� LCS performs (max.) 5 iterations on the train set (bathed learning),wile E-Sl�ve performs no iterations at all (inremental learning). A

Chapter 3 Inremental learning 22situation in whih E-Sl�ve performs multiple iterations with one do-ument (Aggressive-Training) is explored later in this thesis in 4.2.� LCS ollets statistis on the whole train set, while E-Sl�ve only hasstatistis upto the number of douments that have been proessed ur-rently, starting with no statistis at all. Therefore, LCS starts withlass pro�les that are initially �lled with all (initially weighted) fea-tures from douments in the orpus (assuming that no term seletion isused), while E-Sl�ve starts with lass pro�les that are initially empty,extending them with features while douments are proessed.3.3.4 Results: Learning behaviourReuters mono subset orpusThe Auraymiro (3.3.2) is depited for both systems in �gure 3.1. In areal-life situation, this measure is most indiative, as it denotes the numberof \real-time" orretly lassi�ed messages. The graph shows us that E-Sl�ve performs well, as it starts a little lower than LCS, but then omesbak and performs roughly equal to LCS.

60

65

70

75

80

85

90

95

100

0 500 1000 1500 2000 2500

A
cc

ur
ac

y

Number of documents trained

Reuters mono subset corpus

LCS (micro)
E-Sl@ve (micro)

Figure 3.1: E-Sl�ve vs. LCS, Auray, Reuters mono subset orpus.The Auraymiro measure is dominated by the large lasses (those withmany training douments). In order to get an indiation of the ontributionto the overall lassi�ation auray for small and large lasses, themiro-averaged results have to be ompared with the maro-averaged results(as these are dominated by the small lasses).The results of this miro/maro omparison are depited in �gure 3.2. Thegraph depited in this �gure shows that the Auraymaro for LCS is ini-tially a lot higher than the Auraymaro for E-Sl�ve, while for larger num-

3.3 E-Sl�ve vs. LCS 23bers of training examples there is only a small advantage for LCS. Therefore,as themiro-averaged results of both systems were roughly equal, it mightbe supposed that on this orpus LCS learns small lasses (those with fewtraining douments) a little better than E-Sl�ve does. To be sure aboutthis, a graph is reated that shows the averaged auray for a lass aord-ing to its number of training examples. This graph is depited in �gure 3.3.Note that the graph is obtained by ounting for all lasses, per epoh, thenumber of training douments, averaging the results (F1 -measure (3.3.2))for those lasses with an equal number of training douments.

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500

A
cc

ur
ac

y

Number of documents trained

Reuters mono subset corpus

LCS (micro)
E-Sl@ve (micro)
LCS (macro)
E-Sl@ve (macro)

Figure 3.2: E-Sl�ve vs. LCS, miro/maro omparison, Reuters mono sub-set orpus.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

A
cc

ur
ac

y

Number of training documents in a class

Reuters mono subset corpus

LCS
E-Sl@ve

Figure 3.3: E-Sl�ve vs. LCS, lass auray, Reuters mono subset orpus.As the graph depited in �gure 3.3 shows, LCS indeed learns small lassesbetter than E-Sl�ve does. For lasses with more than 20 training examples

Chapter 3 Inremental learning 24both systems perform roughly equal.Edmond orpusFor the Edmond orpus, the Auraymiro for both systems is depited in�gure 3.4. As the graph depited in this �gure shows, LCS performs roughly5% better at start and ends up with an auray that is roughly 3% betterompared to E-Sl�ve.

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900

A
cc

ur
ac

y

Number of documents trained

Edmond corpus

LCS (micro)
E-Sl@ve (micro)

Figure 3.4: E-Sl�ve vs. LCS, Auray, Edmond orpus.It is obvious that, looking at the Auraymiro, LCS performs better thanE-Sl�ve on this orpus, while both systems performed roughly equal on theReuters mono subset orpus. An explanation for this ould be that theEdmond orpus ontains more \noise" on the pre-lassi�ation of its do-uments ompared to the Reuters mono subset orpus. This \noise" ausesthat Balaned Winnow needs more iterations to learn good lass pro�les.Beause E-Sl�ve does not (yet) perform any iterations (and LCS does), thismight explain why LCS performs better than E-Sl�ve on the Edmond or-pus, while both systems perform equal on the Reuters mono subset orpus.Note that the overall lower level of auray ahieved on this orpus (om-pared to the Reuters mono subset orpus) an be explained by the fat thatthe Edmond orpus is roughly three times smaller than the Reuters monosubset orpus (whih means that there are less training examples).As was done for the Reuters mono subset orpus, a miro/maro omparisonhas been depited in �gure 3.5. The graph shows that the Auraymaro forLCS is a lot higher than the Auraymaro for E-Sl�ve (at start it is evenhigher than the Auraymiro for E-Sl�ve). Therefore it might be supposedthat (for this orpus) LCS learns small lasses a lot better ompared to E-Sl�ve. To be sure about this, the graph depited in �gure 3.6 was reated

3.3 E-Sl�ve vs. LCS 25(whih denotes the averaged auray for a lass aording to its numberof training examples). This graph shows that LCS indeed performs a lotbetter on small lasses. Even for larger lasses LCS performs signi�antlybetter.

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900

A
cc

ur
ac

y

Number of documents trained

Edmond corpus

LCS (micro)
E-Sl@ve (micro)
LCS (macro)
E-Sl@ve (macro)

Figure 3.5: E-Sl�ve vs. LCS, miro/maro omparison, Edmond orpus.

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40

A
cc

ur
ac

y

Number of training documents in a class

Edmond corpus

LCS
E-Sl@ve

Figure 3.6: E-Sl�ve vs. LCS, lass auray, Edmond orpus.ConlusionThe results of this experiment show that, for small numbers of training ex-amples, LCS performs better than E-Sl�ve. For larger numbers of trainingexamples, both systems performed roughly equal on the Reuters mono sub-set orpus, while on the Edmond orpus LCS performs roughly 3% to 5%better ompared to E-Sl�ve.

Chapter 3 Inremental learning 26An explanation for the fat that LCS performs better than E-Sl�ve on theEdmond orpus, while on the Reuters mono subset orpus both systemsperform roughly equal, ould be that the Edmond orpus ontains more\noise" on the pre-lassi�ation of its douments ompared to the Reutersmono subset orpus. This \noise" auses that Balaned Winnow needs moreiterations to learn good lass pro�les. Beause E-Sl�ve does not (yet) per-form any iterations (and LCS does), this might explain why LCS performsbetter than E-Sl�ve on the Edmond orpus, while both systems performequal on the Reuters mono subset orpus.In onlusion, it may be stated that the \inremental" Balaned Winnowperforms very well.3.3.5 Experiment: Mistake behaviourIn this experiment the sort of lassi�ation errors of both systems are om-pared.In the previous experiment (3.3.3) we have seen that (after a reasonable num-ber of training examples) E-Sl�ve (inremental learning) performs roughlyas well as LCS (bathed learning) on the Reuters mono subset orpus. Thisimplies that both systems roughly make the same number of mistakes (wronglassi�ations). Interesting to know is: do both systems make the same sortof lassi�ation errors? This experiment explores this issue.Global setupFour tests on the Reuters mono subset orpus were performed, using thesame train sets, test sets, and settings for E-Sl�ve and LCS as in 3.3.3.This time, training on inreasing parts of the train set was not done, as weare not interested in the learning behaviour.For eah of the four tests, the \Top 6" of best lasses for both systems weredetermined. For this purpose, every test was performed 10 times, eah timeusing a randomly shu�ed version of the train set. The \Top 6" onsistsof those lasses that have the lowest average loal ErrorRate. The loalErrorRate for a lass is de�ned as:ErrorRate = RNS +NRSNwith N = RS +RNS +NRS +NRNS (see 3.3.2).For all lasses the 10 loal ErrorRates are summed and averaged. The lasseswith the lowest average loal ErrorRate form the \Top 6".

3.3 E-Sl�ve vs. LCS 273.3.6 Results: Mistake behaviourThe results were satisfying, as both systems appeared to have an equal \Top6" in all four tests. For one test, the results are depited in table 3.5.Top 6 avg. ErrorRate LCS avg. ErrorRate E-Sl�veCooa 0.10 0.07Co�ee 0.00 0.00Gold 0.20 0.07Iron-steel 0.07 0.13Nat-gas 0.00 0.10Sugar 0.00 0.00Table 3.5: Top 6 lasses for E-Sl�ve and LCS.3.3.7 PerformaneTo provide an indiation of the performane of E-Sl�ve (in training andtesting douments), a small test on the Edmond orpus was performed forLCS and E-Sl�ve. The same test was performed 10 times, after whih theresults were averaged. The settings for both systems were the same as in3.3.3.The statistis of this test are depited in table 3.6:train set : 850 douments (1518 KByte)test set : 284 douments (519 KByte)total feature spae : 14379 (unique) featuresnumber of lasses : 18Table 3.6: Statistis of speed performane test.E-Sl�ve resultsThe performane of E-Sl�ve is:Training time: 6.93 seTesting time: 1.67 seNote that �rst all douments were ahed. Cahing all douments (2037KByte) took roughly 11:70 seonds.In onlusion, as an average doument's size in this orpus is roughly 1:8KBytes, E-Sl�ve needs 0:0082 seonds to train a message, and needs 0:0058seonds to test a message.

Chapter 3 Inremental learning 28LCSThe performane of LCS is:Training time: 2.68 seTesting time: 0.95 seCahing all douments (2037 KByte) took roughly 3:51 seonds.In onlusion, as an average doument's size in this orpus is roughly 1:8KBytes, LCS needs 0:0032 seonds to train a message, and needs 0:0033seonds to test a message.The results show that the performane of LCS is better ompared to E-Sl�ve. Note that LCS is implemented in C++ (exeutive ode), while E-Sl�ve is implemented in Java (interpreted ode).3.4 ConlusionThe results of experiments in this hapter showed that the overall perfor-mane of inremental learning applied to Balaned Winnow is good. Forsmall numbers of training examples E-Sl�ve (inremental learning) did notperform as well as LCS (bathed learning), but for larger numbers of train-ing examples it performed roughly equal to LCS, provide that the orpusontains little \noise".The last experiment (3.3.5) showed that the global lassi�ation errors madeby both systems do not di�er, as the \Top 6" of best lasses were equal forboth systems.Aording to these results we might onlude that inremental learning forBalaned Winnow an be really promising in automati email lassi�ation.In the next hapter, an even higher lassi�ation auray with E-Sl�ve issought for, by exploring some (possible) optimalisations.

Chapter 4OptimalisationsIn the previous hapter it was shown that the overall lassi�ation aurayof E-Sl�ve is good. In this hapter some (possible) improvements to E-Sl�veare explored, in order to ahieve an even higher auray. RespetivelyTurbo-Training, Aggressive-Training and Certainty Based Classi�ation areintrodued.4.1 Turbo-TrainingIn a bathed learning situation (2.3), Balaned Winnow an perform mul-tiple iterations on all douments in a train set. In an inremental learningsituation this is not possible, beause eah time a new doument arrives,the lassi�ers are trained with this one (new) doument. Therefore, in theinremental learning situation it is even more important than in the bathedlearning situation to get the maximum amount of information out of eahdoument. To ahieve this, a new heuristi is introdued, whih is alledTurbo-Training.4.1.1 What is Turbo-TrainingWith Turbo-Training BalanedWinnow (whih ismistake-driven (2.2)) shouldlearn more from eah mistake. This may be ahieved by speeding up thepromotion and demotion of the weights of ative terms, aording to thesore of the doument. Therefore the update rules (2.2.1) are hanged asfollows:Positive exampleIn ase doument d is labeled positive for a lass (d 2), the ative termsin lass are promoted 1, 2 or 3 times aording to the sore S(d):

Chapter 4 Optimalisations 30S(d) < �� ! promote(3)S(d) < �(= 1) ! promote(2)S(d) � �+ ! promote(1) (= thik-threshold heuristi (2.2.1))in whih the funtion promote is de�ned as follows:promote(turbofator) : w+ := w+ � �turbofator ;w� := w� � �turbofator ;Negative exampleIn ase doument d is labeled negative for a lass (d =2), the ative termsin lass are demoted 1, 2 or 3 times aording to the sore S(d):S(d) > �+ ! demote(3)S(d) > �(= 1) ! demote(2)S(d) � �� ! demote(1) (= thik-threshold heuristi (2.2.1))in whih the funtion demote is de�ned as follows:demote(turbofator) : w+ := w+ � �turbofator ;w� := w� � �turbofator ;Note that this heuristi is an alternative to iterative training that onservesinrementality.4.1.2 ExperimentIn this experiment, the results of Turbo-Training are ompared with the(previously obtained (3.3.3)) results of normal training.The global setup, and settings for both systems, is hoosen the same as in3.3.3. Note that the same order of the training douments in the di�erentshu�ed versions of the train set was used, in order to obtain reliable results.4.1.3 ResultsReuters mono subset orpusIn �gures 4.1 and 4.2, the results of this experiment for the Reuters monosubset orpus are depited. Examining the learning urve of the graphdepited in �gure 4.1, it an be seen that Turbo-Training speeds up theinitial learning proess extremely. The graph depited in �gure 4.2 providesan even better view, as it an be seen that Turbo-Training inreases theauray for a lass with very few training examples with roughly 10% to20% (on a test set onsisting of 767 douments). When a lass ontainsmore than 20 training examples, the results of Turbo-Training and normaltraining are roughly equal.

4.1 Turbo-Training 31

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500

A
cc

ur
ac

y

Number of documents trained

Reuters mono subset corpus

Turbo-Training ON (micro)
Turbo-Training OFF (micro)
Turbo-Training ON (macro)
Turbo-Training OFF (macro)

Figure 4.1: Turbo-Training, Reuters mono subset orpus.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

A
cc

ur
ac

y

Number of training documents in a class

Reuters mono subset corpus

Turbo-Training
Normal Training

Figure 4.2: Turbo-Training, lass auray, Reuters mono subset orpus.

Chapter 4 Optimalisations 32Edmond orpusThe results for the Edmond orpus are depited in �gures 4.3 and 4.4. Be-ause this orpus ontains far less training examples ompared to the Reutersmono subset orpus, Turbo-Training speeds up the learning proess for thewhole range of numbers of training douments (whih atually an be seenas the initial range). The graph depited in �gure 4.4 provides a better view,as it shows that Turbo-Training inreases the auray for lasses ontaininga maximum of 17 training examples. When a lass ontains more than 17training examples, the results of Turbo-Training are roughly equal to theresults of normal training.

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900

A
cc

ur
ac

y

Number of documents trained

Edmond corpus

Turbo-Training ON (micro)
Turbo-Training OFF (micro)
Turbo-Training ON (macro)
Turbo-Training OFF (macro)

Figure 4.3: Turbo-Training, Edmond orpus.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

A
cc

ur
ac

y

Number of documents in a class

Edmond corpus

Turbo-Training
Normal Training

Figure 4.4: Turbo-Training, lass auray, Edmond orpus.

4.2 Aggressive-Training 33ConlusionThe onlusion for this experiment is very simple: Turbo-Training is a per-fet alternative to iterative training, whih onserves inrementality, as itspeeds up the initial learning proess by learning lasses with small numbersof training examples better.4.2 Aggressive-TrainingIn an inremental learning situation it is not possible to train iterativelyon all douments in a train set. But it is possible to train iteratively withone doument. This is exatly what Aggressive-Training does. Eah emailthat arrives will be trained iteratively until it does not auses a mistakeanymore. This means that a negative example for a lass will be trainediteratively until it obtains a sore for lass that is below 0:9 (= ��). Onthe other hand, a positive example for a lass will be trained iterativelyuntil it obtains a sore for lass that is above 1:1 (= �+).4.2.1 ExperimentIn this experiment, the results of Aggressive-Training are ompared withthe (previously obtained (3.3.3)) results of normal training.The global setup, and settings for both systems, are equal to those in theprevious experiment (4.1.2).4.2.2 ResultsReuters mono subset orpusThe results for the Reuters mono subset orpus are depited in �gures 4.5and 4.6. Examining the learning urve of the graph depited in �gure 4.5, itan be seen that Aggressive-Training speeds up the initial learning proess alittle. The graph depited in �gure 4.6 on�rms this, as Aggressive-Traininginreases the auray for lasses with few training examples. For lassesthat onsist of more than 20 training examples, the results of Aggressive-Training roughly equal the results of normal training.

Chapter 4 Optimalisations 34

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500

A
cc

ur
ac

y

Number of documents trained

Reuters mono subset corpus

Aggressive-Training ON (micro)
Aggressive-Training OFF (micro)
Aggressive-Training ON (macro)
Aggressive-Training OFF (macro)

Figure 4.5: Aggressive-Training, Reuters mono subset orpus.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

A
cc

ur
ac

y

Number of training documents in a class

Reuters mono subset corpus

Aggressive-Training
Normal Training

Figure 4.6: Aggressive-Training, lass auray Reuters mono subset orpus.

4.2 Aggressive-Training 35Edmond orpusThe results for the Edmond orpus are depited in �gures 4.7 and 4.8. Forthis orpus also, a slight speedup in the learning proess an be ahieved.

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900

A
cc

ur
ac

y

Number of documents trained

Edmond corpus

Aggressive-Training ON (micro)
Aggressive-Training OFF (micro)
Aggressive-Training ON (macro)
Aggressive-Training OFF (macro)

Figure 4.7: Aggressive-Training, Edmond orpus.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

A
cc

ur
ac

y

Number of documents in a class

Edmond corpus

Aggressive-Training
Normal Training

Figure 4.8: Aggressive-Training, Edmond orpus.ConlusionIn onlusion, it an be stated that Aggressive-Training speeds up the initiallearning proess a little, as it learns lasses with small numbers of train-ing examples better. Although Aggressive-Training does not speed up thelearning proess as muh as Turbo-Training does, the Aggressive-Trainingheuristi an be very useful, as it enables the system to de-train and re-train

Chapter 4 Optimalisations 36lasses (see 5.2.1). In hapter 5, the Aggressive-Training heuristi is used inrealising a senario (negative relevane feedbak) for a real-life situation.4.3 Certainty-based lassi�ationThis thesis deals withmono-lassi�ation. This means that a new doumentmust be lassi�ed in exatly one lass. One way of determining this lass,is to ompute the sore S(d) of doument d for every lass , aording tothe urrent state (weight vetor) of the lassi�ers, and then assign d to thelass for whih d obtained the highest sore. This is how most appliationswork.However, it is possible that the omparison of the sores for these lassesis not suh a good measure in determining the relevant lass for a newdoument. This an be explained by the fat that a highest sore might bevery low for the relevant lass aording to the sores history of previouslyproessed douments for that lass, while a less higher sore might be veryhigh aording to the sores history of previously proessed douments forother lasses.Therefore a di�erent method in determining the relevant lass for a newdoument is explored. This method uses statistis on the sores of previouslyproessed douments in determining the destination lass for a doument.Sores of positive douments for a lass (SPos) and sores of negativedouments for a lass (SNeg) are distinguished:SPos = fs1; s2; � � � ; sngSNeg = fs1; s2; � � � ; smgwith n the number of sores of previously proessed positive douments andm the number of sores of previously proessed negative douments.Now, when a new doument d arrives, for eah lass the yes-probabilityand the no-probability is omputed. The yes-probability indiates the prob-ability of d being relevant for lass and the no-probability indiates theprobability of d being irrelevant for lass . These probabilities are de�nedas follows: Y esProb(d) = RS(S(d))RS(S(d)) +NRS(S(d))NoProb(d) = RS(S(d))RS(S(d)) +RNS(S(d))in whih S(d) is the sore of doument d for lass , and RS, RNS andNRS have the same meaning as in 3.3.2 and are de�ned as follows:

4.3 Certainty-based lassi�ation 37RS() = jSPos[s > ℄jRNS() = jSPos[s � ℄jNRS() = jSNeg[s > ℄jin whih is a threshold.Finally, for eah lass a ertainty measure is obtained, whih indiates howertain it is that doument d is relevant or irrelevant for lass :Cert(d) = jY esProb(d) �NoProb(d)jThree di�erent ases have to be distinguished, in order to larify the inter-pretation for Cert(d):1. If Y esProb(d) = NoProb(d) then the lassi�er for lass does notknow whether d is relevant or irrelevant for lass , as Cert(d) = 02. If Y esProb(d) > NoProb(d) then the lassi�er for lass preditsthat d is relevant for lass with a ertainty of Cert(d).3. If Y esProb(d) < NoProb(d) then the lassi�er for lass preditsthat d is irrelevant for lass with a ertainty of Cert(d).A new doument d is assigned to a lass aording to the following assigningrules:� If there are x lasses (x � 1) for whih Y esProb(d) � NoProb(d)holds, then doument d is assigned to one of those x lasses for whihCert(d) is highest.� When the situation is suh that for all lassesNoProb(d) > Y esProb(d)then the algorithm atually tells us that doument d is irrelevant forall lasses. When this happens, d is assigned to the lass for whihCert(d) is lowest, as in that ase the algorithm is least sure about his\no-answer".4.3.1 ExperimentIn this experiment, the results of Certainty Based Classi�ation are om-pared with the (previously obtained (3.3.3)) results of normal training.The global setup, and settings for both systems, are equal to those in theprevious experiments (4.1.2, 4.2.1).

Chapter 4 Optimalisations 384.3.2 ResultsThe results of this experiment are depited in �gures 4.9 and 4.10, respe-tively for the Reuters mono subset orpus and Edmond orpus.

50

55

60

65

70

75

80

85

90

95

100

0 500 1000 1500 2000 2500

A
cc

ur
ac

y

Number of documents trained

Reuters mono subset corpus

Normal Classification (micro)
Certainty Based Classification (micro)

Figure 4.9: Certainty Based Classi�ation, Reuters mono subset orpus.

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800 900

A
cc

ur
ac

y

Number of documents trained

Edmond corpus

Normal Classification (micro)
Certainty Based Classification (micro)

Figure 4.10: Certainty Based Classi�ation, Edmond orpus.Aording to the results depited in both graphs, it is obvious that this wayof determining the relevant lass for a new doument performs worse thanthe \standard" method (where a doument is lassi�ed in the lass for whihit obtained the highest sore, as desribed in 3.2.4).Searhing for a ause, it was found that for many of the douments thealgorithm has no \ertain" answer, beause NoProb(d) > Y esProb(d) forall lasses i. So, for these douments, the algorithm atually answers: \I donot know where to lassify this doument!". The graph depited in �gure

4.4 Conlusion 394.11 shows the perentage of douments in the test set for whih E-Sl�vedid not know where to lassify them. It an be seen that for small numbersof training examples the perentage of \unertain" erti�ed douments ishigher than for large numbers of training examples. This ould be explainedby the fat that the sores history of lasses is less \ertain" when fewdouments are trained.

2

4

6

8

10

12

14

16

18

0 500 1000 1500 2000 2500

P
er

ce
nt

ag
e

of
 ‘‘

un
ce

rt
ai

n’
’ c

er
tif

ie
d

do
cs

 in
 te

st
se

t

Number of documents trained

Reuters mono subset corpus (767 docs)
Edmond corpus (284 docs)

Figure 4.11: Certainty Based Classi�ation, \unertain" dos.In onlusion, Certainty Based Classi�ation dereases the auray, parti-ularly in the initial phase. Therefore, future researh on this issue might beuseful.4.4 ConlusionSeveral extensions and modi�ations to E-Sl�ve were introdued. The re-sults were quite satisfying. Turbo-Training is a perfet alternative to iter-ative training, whih onserves inrementality, as it speeds up the initiallearning proess by learning small lasses better. Aggressive-Training re-sulted also in a speedup of the learning proess, but it does not outperformTurbo-Training. Nevertheless, the Aggressive-Training heuristi is very use-ful, as shall be demonstrated in hapter 5. Certainty based lassi�ationdid not perform well, as for many douments the system atually did notknow where to lassify them, but it might be an interesting issue for futureresearh.

Chapter 4 Optimalisations 40

Chapter 5Negative relevane feedbakRelevane feedbak is the information about a doument that indiates thelass for whih that doument is relevant, aording to the opinion of an\expert". The system needs this feedbak in order to be able to (inre-mentally) train with the doument. In an experimental environment, thepre-lassi�ation of douments in the orpus an be used as \perfet" rele-vane feedbak (as was done in all our previous experiments). In a real-lifesituation, this is impossible, and therefore relevane feedbak must be ob-tained from the user. A diÆult point is then to obtain this information suhthat the user will not �nd it annoying. In this hapter, negative relevanefeedbak is introdued, whih solves this problem elegantly.5.1 Obtaining relevane feedbakIn a real-life situation, when a new email arrives, the global proess forE-Sl�ve should be as follows:1. Classify the new email aording to the urrent state of the lassi�ers,and �le this email automatially in the mailfolder that seems to bemost relevant aording to this lassi�ation.2. Obtain relevane feedbak on the email.3. Inrementally train all lassi�ers with the single email, aording tothe relevane feedbak that was obtained in the previous step.The bottlenek in this proess is the seond step. In this step the systematually needs to know whether the email was lassi�ed (and thus �led)orretly. In ase it was not �led orretly, the system needs to know intowhih mailfolder it should have been �led. The user has to provide this

Chapter 5 Negative relevane feedbak 42information (relevane feedbak) to the system, beause the inoming emailsare (usually) not labeled...Two situations an be distinguished after a new email has been lassi�ed.A \positive" situation and a \negative" situation:1. Positive situationthe email has been lassi�ed (and thus �led) orretly.2. Negative situationthe email has been lassi�ed (and thus �led) inorretly.In both situations, the system needs relevane feedbak (for inrementallearning purposes). The most simple form of obtaining relevane feedbak,is to prompt the user every time a new email has been �led, and ask himexpliitly for relevane feedbak (whih has been simulated in all our previousexperiments). This means that, in ase the email has been �led orretly,the user has to on�rm this, otherwise the user has to indiate into whihmailfolder the email should have been �led. It is lear that this expliit formof obtaining relevane feedbak imposes an inreased burden and inreasedognitive load, as was explored in [20℄.The system that has been desribed in [22℄ (Swift�le) uses a more subtlemethod. It provides three shortut buttons above eah message, whih rep-resent the \top 3" lasses for whih the email seems relevant aording to thesystem. The shortut buttons an be used to move a message quikly to thespei� mailfolder (lass). Important to notie is that Swift�le does not �lemessages automatially, but that it only provides shortut buttons, whihenables the user to �le the message. Impliitly this means that, for everymessage, the user still has to tell the system for whih lass (mailfolder) themessage is most relevant (by liking on a shortut button).5.2 Negative relevane feedbakE-Sl�ve �les messages automatially. Messages that are �led into the wrongmailfolder, will be deteted by the user after some time. It is reasonable toassume that the user will move this message to the orret mailfolder. Thismovement should be deteted by the system, beause it provides relevanefeedbak on the lassi�ation of the email. Atually the user tells the system:\Hey, this email should not be �led here, it should be �led there!". Beausethis (impliit) feedbak is provided only in a \negative" situation (in whihthe system has �led a message into the wrong mailfolder), it is alled negativerelevane feedbak.In this hapter, it is explored whether an aeptable level of auray anbe ahieved with E-Sl�ve in a real-life situation, when the user only has

5.2 Negative relevane feedbak 43to provide negative relevane feedbak. If this is possible, this would implythat the user only needs little e�ort in keeping the system \aurate", as heonly has to move mislassi�ed emails to the orret mailfolder (whih shouldour rarely, after an aeptable level of auray is ahieved).The only problem with this senario is, that in this way E-Sl�ve does notreieve relevane feedbak in a \positive" situation, as orretly �led mes-sages will never be moved to another mailfolder. Fortunately, this an besolved by slightly modifying the learning proess for E-Sl�ve.5.2.1 Inremental learning proessE-Sl�ve needs relevane feedbak immediately after a new message has been�led (see the proess in 5.1). As was mentioned before, it is no good option tolet the user provide this information for every message. Therefore, E-Sl�veprovides its own relevane feedbak. This is realised by assuming (blindly)that E-Sl�ve always lassi�es a (new) message initially orretly, using thelassi�ation results as the relevane feedbak. More formally, the proess isas follows:1. Classify message d into lass (mailfolder) x, whih is the lass forwhih d seems to be relevant aording to the urrent weight vetorwi for all lassi�ers Xi .2. Obtain relevane feedbak : assume (blindly) that lass x (step 1) isthe lass for whih d is relevant.3. Inrementally train all lassi�ers Xi with message d, using it as apositive example for lass x and as a negative example for all otherlasses i, for whih i 6= x.This proess ensures that E-Sl�ve obtains relevane feedbak immediatelyafter a new message has been lassi�ed, without the need for any interationwith the user, whih enables the system to train immediately with this mes-sage. For messages that are lassi�ed initially into the orret lass (step 1),this works �ne. Only a problem ours, when a message is lassi�ed into thewrong lass (step 1), beause then the system obtains the wrong relevanefeedbak (step 2), and therefore trains with this message (step 3), using itas a positive example for the wrong lass and as a negative example forthe orret lass (and all other lasses). Fortunately, this \damage" an berepared when the user detets the message was �led into the wrong mail-folder, and moves the message to the orret mailfolder (providing negativerelevane feedbak).Say that the user moves an email message d from lass (mailfolder) x tolass y. This means that, aording to the user, E-Sl�ve initially made a

Chapter 5 Negative relevane feedbak 44mistake in lassifying message d. Consequently, lass x has been trainedpositive with an irrelevant example, and lass y has been trained negativewith a relevant example. Therefore E-Sl�ve has to de-train lass x formessage d and has to re-train lass y for message d. This is realised asfollows:1. De-trainMessage d is trained as a negative example for lass x (aording tothe thik-threshold heuristi (2.2.1)). This is done iteratively, until thesore Sx(d) reahes a value below ��. In other words: message d isdemoted for lass x until it provides a sore below ��.2. Re-trainMessage d is trained as a positive example for lass y (aording tothe thik-threshold heursti (2.2.1)). This is done iteratively, until thesore Sy(d) reahes a value above �+. In other words: message d ispromoted for lass y, until it provides a sore above �+.Note that all other lasses i, for whih i 6= y, are also trained with messaged, using it as a negative example for these lasses. However, in most asesthis should not be neessary, beause the sore of message d for all thoselasses should be below �� already, as d was never trained as a positiveexample for those lasses.5.3 Non-delayed negative relevane feedbakIn the best ase in a real-life situation, negative relevane feedbak is providedimmediately. This means that the user detets and moves a mislassi�edmessage immediately, even before the arrival of a new message. This may notbe very realisti, but it provides a �rst indiation of how negative relevanefeedbak performs.5.3.1 ExperimentIn this experiment, the results of non-delayed negative relevane feedbakare ompared with the (previously obtained) results of Aggressive-Training(see 4.2).The experiment was performed on both the Reuters mono subset orpus andEdmond orpus, using the labeling of douments as the \perfet" relevanefeedbak. The global setup (train sets, test sets and parameter settings forE-Sl�ve) is the same as in 3.3.3. To obtain reliable results, the same orderof training douments in the di�erent shu�ed versions of the train set wasused.

5.3 Non-delayed negative relevane feedbak 45Simulation setupTo simulate the situation of non-delayed negative relevane feedbak, thelearning proess for E-Sl�ve was as follows:1. Classify message d into lass x, whih is the lass for whih d seemsto be relevant aording to the urrent state of all lassi�ers Xi .2. Inrementally train all lassi�ers, using d as a positive example for lassx and as a negative example for all other lasses. (Assume blindlythat the results in step 1 are orret.)3. Obtain relevane feedbak (by heking the label of message d), whihprovides the information: d is relevant for lass y.4. if x 6= y then: de-train lass x for message d and re-train lassy for message d.The results of Aggressive-Training (4.2.2) were obtained in a situation whihsimulates that the user provides relevane feedbak expliitly (as was thease for all our previous experiments). The learning proess for E-Sl�ve wasas follows:1. Classify message d into lass x, whih is the lass for whih d seemsto be relevant aording to the urrent state of all lassi�ers Xi .2. Obtain relevane feedbak (by heking the label of message d), whihprovides the information: d is relevant for lass y.3. Inrementally train all lassi�ers, using d as a positive example forlass y and as a negative example for all other lasses.Note that in both simulations, an email is trained iteratively until it doesnot ause a mistake anymore (whih is alled Aggressive-Training...). Thismeans that a positive example for a lass will be trained iteratively until itobtains a sore for lass that is above �+. A negative example for a lass will be trained iteratively until it obtains a sore for lass that is below��.5.3.2 ResultsThe results of this experiment are depited in �gures 5.1 and 5.2, respe-tively for the Reuters mono subset orpus and Edmond orpus. The resultsshow that negative relevane feedbak performs roughly equal to Aggressive-Training, and at some points it performs even better. This is striking,beause the opposite was assumed.

Chapter 5 Negative relevane feedbak 46

60

65

70

75

80

85

90

95

100

0 500 1000 1500 2000 2500

A
cc

ur
ac

y

Number of documents trained

Reuters mono subset corpus

Aggressive Training
Non-Delayed Negative Relevance Feedback

Figure 5.1: Non-Delayed Negative Relevane Feedbak, Reuters mono subsetorpus

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900

A
cc

ur
ac

y

Number of documents trained

Edmond corpus

Aggressive-Training
Non-Delayed Negative Relevance Feedback

Figure 5.2: Non-Delayed Negative Relevane Feedbak, Edmond orpus

5.4 Delayed negative relevane feedbak 47In a real-life situation it is not likely that a mislassi�ed message will bedeteted and moved immediately after it has been �led. For this reason, itis too early to onlude that the negative relevane feedbak senario works�ne in a real-life situation. The only onlusion for now is, that de-trainingand re-training of lasses, work extremely well.5.4 Delayed negative relevane feedbakIn a real-life situation, it is not reasonable to assume that the user will pro-vide negative relevane feedbak immediately. Usually there will be a delaybetween the moment the system �les a message d (into the wrong mailfolder),and the moment the user moves message d into the orret mailfolder. Thisdelay ould e�et the Auray of the system, as in the meanwhile newmessages arrive that an be �led (and thus trained) inorretly due to theurrently (and temporarily) \instable" state of the lassi�ers. For this pur-pose, an experiment was performed to see whether the delayed negativerelevane feedbak senario dereases the Auray.5.4.1 ExperimentIn this experiment, the results of delayed negative relevane feedbak areompared with the (previously obtained) results of non-delayed negativerelevane feedbak (see 5.3.1).The global setup (all settings, train sets and test sets) for this experimentis equal to the global setup for the previous experiment.Simulation setupTo simulate the situation of delayed negative relevane feedbak, eah mes-sage d that has been mislassi�ed is assigned a \delay-value", denoted as Æd.This delay-value is randomly hoosen in the range [Æ�; Æ+℄, with (Æ� � Æ+,Æ� � 0). If Æd = 0, it is assumed that negative relevane feedbak on d isprovided immediately, else it is assumed that it takes Æd more messages tobe proessed �rst, before negative relevane feedbak is provided on d.To desribe the simulation more formally, a train set T = fd1; � � � ; dng, isde�ned (n denoting the number of messages in the train set) and a fun-tion T ime(di) whih determines the number of messages that have beenproessed sine message di was proessed.The proess is as follows:

Chapter 5 Negative relevane feedbak 481. Classify message di into lass x, whih is the lass for whih di seemsto be relevant aording to the urrent state of all lassi�ers Xz .2. Inrementally train all lassi�ers, using di as a positive example forlass x and as a negative example for all other lasses.3. Obtain relevane feedbak (by heking the label of message di), whihprovides the information: di is relevant for lass y.4. if x 6= y then: randomly assign a delay-value Ædi to di.(with Æ� � Ædi � Æ+).5. for all messages dj that were assigned a delay Ædj doif T ime(dj) � Ædj then: use message dj for de-training and re-training of lasses.Note that when range [d�; d+℄ is hoosen as [0; 0℄, the situation of non-delayed negative relevane feedbak is obtained. Note also that there neverneed to be more than d+ messages queued (whih are messages d for whihT ime(d) < Æd holds).In this experiment, several tests were performed, using the following ranges:[d�; d+℄ = [0; 0℄ (equals non-delayed negative relevane feedbak)[d�; d+℄ = [0; 10℄[d�; d+℄ = [0; 20℄[d�; d+℄ = [0; 50℄5.4.2 ResultsThe results of this experiment are depited in �gures 5.3 and 5.4. It anbe seen that a wider delay range auses a more dereased auray of thesystem, partiularly for small numbers of training douments. For largenumbers of training douments (> 800), the results seem to onverge.From the results of this experiment we may onlude that it indeed is pos-sible to obtain a very aeptable level of auray with E-Sl�ve when theuser only has to provide negative relevane feedbak, provide that negativerelevane feedbak is given on all messages that have been mislassi�ed.5.4.3 LazynessIn real life, it ould happen that some mislassi�ed messages are never movedto the orret mailfolder. When this happens, most of the times, it is ausedby the \lazyness" of users. Consequently, the system will be a little \on-fused", as it is atually trained with inorret information (whih is neverorreted). To explore the e�et of this onfusion on the auray of the

5.4 Delayed negative relevane feedbak 49

55

60

65

70

75

80

85

90

95

100

0 500 1000 1500 2000 2500

A
cc

ur
ac

y

Number of documents trained

Reuters mono subset corpus

Non-Delayed Negative Relevance Feedback (Delay: 0-0)
Negative Relevance Feedback, Delay: 0-10
Negative Relevance Feedback, Delay: 0-20
Negative Relevance Feedback, Delay: 0-50

Figure 5.3: Delayed Negative Relevane Feedbak, Reuters mono subsetorpus

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900

A
cc

ur
ac

y

Number of documents trained

Edmond corpus

Non-Delayed Negative Relevance Feedback (Delay: 0-0)
Negative Relevance Feedback, Delay: 0-10
Negative Relevance Feedback, Delay: 0-20
Negative Relevance Feedback, Delay: 0-50

Figure 5.4: Delayed Negative Relevane Feedbak, Edmond orpus

Chapter 5 Negative relevane feedbak 50system, an additional experiment is performed whih simulates a delayednegative relevane feedbak senario in whih it is assumed that a ertainperentage of mislassi�ed messages will never be moved to the orretmailfolder (and therefore will not be used for de-training and re-traininglasses).In �gures 5.5 and 5.6 the results are depited for situations in whih 0%,10% and 20% of the number of mislassi�ed messages is assumed to be nevermoved to the orret mailfolder. The delay range was set on [0; 20℄.

55

60

65

70

75

80

85

90

95

100

0 500 1000 1500 2000 2500

A
cc

ur
ac

y

Number of documents trained

Reuters mono subset corpus

Negative Relevance Feedback, Delay: 0-20, Lazy: 0%
Negative Relevance Feedback, Delay: 0-20, Lazy: 10%
Negative Relevance Feedback, Delay: 0-20, Lazy: 20%

Figure 5.5: Delayed Negative Relevane Feedbak, Reuters mono subsetorpus

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900

A
cc

ur
ac

y

Number of documents trained

Edmond corpus

Negative Relevance Feedback, Delay: 0-20, Lazy: 0%
Negative Relevance Feedback, Delay: 0-20, Lazy: 10%
Negative Relevance Feedback, Delay: 0-20, Lazy: 20%

Figure 5.6: Delayed Negative Relevane Feedbak, Edmond orpusThe graphs show that, as was supposed, a higher \lazy" perentage resultsin a little dereased auray. Fortunately, in real life, the user shall not

5.5 Conlusion 51bene�t by not moving mislassi�ed messages to the orret folder, whihtherefore makes it reasonable to assume that this ours rarely.5.5 ConlusionIn this hapter an elegant solution to the problem of obtaining relevanefeedbak in a real-life situation has been provided: the negative relevanefeedbak senario (5.2). Negative relevane feedbak ensures that the useronly needs little e�ort in keeping the system aurate, as he only needs tomove mislassi�ed messages to the orret mailfolder (whih should ourrarely, after an aeptable level of auray is ahieved).Results of experiments that simulate the negative relevane feedbak senarioshow that, even in the presene of \lazy" users, a very aeptable level ofauray an be ahieved. Therefore it might be onluded that E-Sl�veould beome a useful and valuable addition to any (Java-ompliant) email-lient.

Chapter 5 Negative relevane feedbak 52

Chapter 6ConlusionLooking at the results of experiments performed in this thesis, the overallonlusion is that E-Sl�ve ould beome a useful and valuable addition toany Java-ompliant email-lient.The ore of E-Sl�ve, an \inremental" Balaned Winnow (learning algo-rithm), has (empirially) proved to be very aurate in lassifying emails(and short newspaper artiles). Initially omparing E-Sl�ve to LCS, a sys-tem that uses Balaned Winnow in a \bathed" fashion, the results of E-Sl�ve were, after a reasonable number of training examples, roughly asgood as the results of LCS. Only for small numbers of training examples,E-Sl�ve performed worse than LCS. Aording to these results, E-Sl�veseemed already promising in automati email lassi�ation, but an evenhigher auray with E-Sl�ve was sought for by exploring some (possible)optimalisation.Three (possible) optimalisations for E-Sl�ve were explored. Two of thoseslightly hange the training heuristi of Balaned Winnow: Turbo-Trainingand Aggressive-Training. The third provided a di�erent heuristi in lassi-fying a new message: Certainty Based Classi�ation.The results of Certainty Based Classi�ation, whih ensures that new mes-sages are lassi�ed aording to a \ertainty", were not satisfying. The mainreason for this was that, partiularly for small numbers of training examples,lassi�ers were extremely \unertain" about their predition.On the other hand, the results of Turbo-Training and Aggressive-Trainingwere quite satisfying. Turbo-Training, an alternative for iterative trainingwhih onserves inrementality, resulted in a strong speedup of the initiallearning proess, as lasses onsisting of only few training examples werelearned muh better. Aggressive-Training, whih ensures that a new mes-sage is trained iteratively until the algorithm predits the orret lass forthis message, resulted in a slight speedup of the initial learning proess.

Chapter 6 Conlusion 54Although Aggressive-Training did not perform as well as Turbo-Training,it is useful in realising a senario suitable for a real-life situation (negativerelevane feedbak).E-Sl�ve (inrementally) learns from (new) messages aording to the feed-bak that is provided on messages that have been lassi�ed. In a real-lifesituation, this relevane feedbak must be obtained from the user in orderto remain aurate. A diÆult point is then to obtain relevane feedbaksuh that the user will not �nd it annoying. In this thesis an elegant solu-tion to this problem has been provided, named negative relevane feedbak.Negative relevane feedbak ensures that the user only needs little e�ort inkeeping the system aurate, as he only needs to move mislassi�ed messagesto the orret lass (mailfolder). Results of experiments (whih simulateda real-life situation) have shown that, using negative relevane feedbak, ahigh level of auray an be ahieved.6.1 Future researhThe ideas for the issues mentioned in this setion were all aquired duringthe prodution of this thesis, but there was no time left to explore them.6.1.1 Term seletionMost lasses depend only on a small subset of indiative features and noton all the features that our in douments that belong to that spei�ategory. Therefore, it seems plausible to disard \noisy" features for everylass, as it improves eÆieny and possibly also the auray of the lassi�er.Some lassi�ation systems (like LCS, see [12℄) have a feature seletion pre-proessing stage. In an inremental approah this is not possible, beausethe lass pro�les are build \on-the-y", adding new features as inomingdouments are proessed. Therefore, a proposal for a new term seletiontehnique that ould be used for inremental training (with Balaned Win-now) is introdued.Motion-based term seletionAs in [13℄ is shown, the Winnow k-steps strategy does not work well. There-fore another strategy, based on the number of promotions and demotions(together alled motions) of a feature, is proposed.This tehnique uses a UC ratio, whih is de�ned as follows:UCf = jpromof � demof jpromof + demof

6.1 Future researh 55in whih promof is the number of promotions for feature f and demofthe number of demotions for that feature. This ratio is an indiator ofthe unertainty (see [17℄) in the ontribution of this feature to the sore.Apart from the ase in whih promof = demof = 0, this value more or lessdereases from 1 to a small number.Example approahes for seleting terms (expliitly or impliitly) are:� Expliit{ disard all terms for whih UC < k holds, in whih k is a ertainthreshold.{ selet the top k terms per lass with the highest UC.� Impliitadapt the sore omputation of Balaned Winnow, as follows:S(d) = mXj=1(w+ (fj)� w� (fj)) � sd(fj) � UCfj > �Note that for the expliit approahes something \smart" has to be done,as features that have been disarded ould beome important again in thefuture.6.1.2 Threshold rangeReent researh with LCS 1 explored the e�et of di�erent values for ��and �+ on the lassi�ation auray of Balaned Winnow. Performing anexperiment in whih for several di�erent ombinations of �� and �+ thelassi�ation auray was determined, it was found that using �� = 0:6and �+ = 3:0 resulted in an inreased auray of roughly 3% ompared toresults that were already very good.Beause LCS uses Balaned Winnow in a \bathed" fashion, it is useful toperform a similar experiment for E-Sl�ve (whih uses Balaned Winnowin an \inremental" fashion) to hek whether this results in an inreasedauray also.
1Linguistial Classi�ation System, developed at the Katholieke Universiteit ofNijmegen

Chapter 6 Conlusion 56A quik test using �� = 0:6 and �+ = 3:0, yielded the results as depited in�gures 6.1 and 6.2.

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500

A
cc

ur
ac

y

Number of documents trained

Reuters mono subset corpus

teta-: 0.6, teta+: 3.0 (micro)
teta-: 0.9, teta+: 1.1 (micro)
teta-: 0.6, teta+: 3.0 (macro)
teta-: 0.9, teta+: 1.1 (macro)

Figure 6.1: Theta test, Reuters mono subset orpus

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900

A
cc

ur
ac

y

Number of documents trained

Edmond corpus

teta-: 0.6, teta+: 3.0 (micro)
teta-: 0.9, teta+: 1.1 (micro)
teta-: 0.6, teta+: 3.0 (macro)
teta-: 0.9, teta+: 1.1 (macro)

Figure 6.2: Theta test, Edmond orpusFrom the results is lear that modifying the thresholds inreases the over-all learning behaviour quite extremely. Note that the Aggressive-Trainingheuristi (4.2) was used for this test.6.1.3 Certainty Based Classi�ationAs the results of experiments in this thesis showed, Certainty Based Clas-si�ation did not perform well. The main reason for this was that manydouments were erti�ed \unertain". In order to make this lassi�ation

6.2 Further work 57heuristi work, more researh has to be done. For example, the \unertain"douments ould be examined and removed from the train set in order to seeif auray grows. Also adaptions to the yes-probability and no-probabilityould be sought for, in order to ahieve more reliable ertainty measures.6.2 Further workE-Sl�ve should be adapted to a popular (Java-ompliant) email-lient suhas Netsape Messenger.

Chapter 6 Conlusion 58

AknowledgementsI would like to thank the ompany Edmond R&D that generously o�eredme a plae for writing this thesis.Speial thanks to:- Prof. C.H.A Koster and Dr. Paul Jones, who generously assisted meduring this thesis.- My parents- Marieke Linders, for her love and support.

Bibliography[1℄ Apt�e C., Damerau F. Automati learning of deision rules for textategorization. ACM Transations on Information Systems, 12(3):233{251, january 1994.[2℄ Barret R. and Selker T. AIM: A new approah for meeting informationneeds. Tehnial Report, IBM Researh, otober 1995.[3℄ Beney J. The LCS Pro�ling System User Manual. version 1.2, may2000.[4℄ Blum A., Mithell T. Combining labeled and unlabeled data with o-training. In Proeedings of the Eleventh Annual Conferene on Com-putational Learning Theory, pages 92{100.[5℄ Cohen W.W. Fast e�etive rule indution. Mahine Learning: Proeed-ings of the Twelfth International Conferene, 1995.[6℄ Cohen W.W. Learning Rules that Classify E-mail. In Proeedings of the1996 AAAI Spring Symposium on Mahine Learning and InformationAess, pages 18{25, 1996.[7℄ Cohen W.W. Learning with Set-valued Features. In Proeedings of theThirteenth National Conferene on Arti�ial Intelligene, 1996.[8℄ Dagan I., Karov Y., Roth D. Mistake-driven learning in text atego-rization. In Proeedings of EMNLP-97, 2nd Conferene on EmpirialMethods in Natural Language Proessing, 1997.[9℄ Helfman J. Isbell C. Ishmail: Immediate Identi�ation of ImportantInformation. In Proeedings of ECIR 2002, 1995.[10℄ Joahims T. Text ategorization with Support Vetor Mahines: learn-ing with many relevant features. In Proeedings of ECML-98, 10thEuropean Conferene on Mahine Learning, version 1.2, may 2000.[11℄ Kirithenko S., Matwin S. Email Classi�ation with Co-Training. o-tober 2001.

[12℄ Koster C.H.A. IR2 ditaat: Full-Text Information Retrieval. marh2002.[13℄ Koster C.H.A., Ragas H. Four text lassi�ation algorithms omparedon a duth orpus. In Proeedings of SIGIR-98, 21st ACM InternationalConferene on Researh and Development in Information Retrieval, au-gustus 1998.[14℄ Littlestone N. Learning quikly when irrelevant attributes abound: Anew linear-threshold algorithm. Mahine Learning, 2:285{318, 1988.[15℄ Maes P. Agents that Redue Work and Information Overload. Com-muniations of the ACM, 37(7):31{40, july 1994.[16℄ Payne T.R., Edwards P. Interfae Agents that Learn: An Investiga-tion of Learning Issues in a Mail Agent Interfae. Applied Arti�ialIntelligene, 11:1{32, 1997.[17℄ Peters C., Koster C.H.A. Unertainty-based noise redution and terms-eletion in text ategorization. ECIR 2002, april 2002.[18℄ Provost J. Na��ve Bayes vs. Rule-Learning in Classi�ation of Email. InProeedings of ECIR 2002, 2000.[19℄ Rohio J.J. Relevane feedbak in Information Retrieval. The SmartRetrieval system - experiments in automati doument proessing, pages313{323, 1971.[20℄ Ryen et. al. The Use of Impliit Evidene for Relevane Feedbak inWeb Retrieval. In Proeedings of ECIR 2002, marh 2002.[21℄ Sebastiani F. Mahine Learning in Automated Text Categoriza-tion. Tehnial report IEI-B4-31-1999, Instituto di Elaborazionedell'Informazione, Consiglio Nazionale delle Rierhe, Pisa, IT, 1999.Submitted for publiation to ACM Computing Surveys., 2000.[22℄ Segal R.B. and Kephart J.O. SwiftFile: An intelligent assistant fororganizing email. In AAAI 2000 Spring Symposium on Adaptive UserInterfaes, 2000.

